Toward sparse and geometry adapted video approximations

Video signals are sequences of natural images, where images are often modeled as piecewise-smooth signals. Hence, video can be seen as a 3D piecewise-smooth signal made of piecewise-smooth regions that move through time. Based on the piecewise-smooth model and on related theoretical work on rate-distortion performance of wavelet and oracle based coding schemes, one can better analyze the appropriate coding strategies that adaptive video codecs need to implement in order to be efficient. Efficient video representations for coding purposes require the use of adaptive signal decompositions able to capture appropriately the structure and redundancy appearing in video signals. Adaptivity needs to be such that it allows for proper modeling of signals in order to represent these with the lowest possible coding cost. Video is a very structured signal with high geometric content. This includes temporal geometry (normally represented by motion ...

Divorra Escoda, Oscar — EPFL / Signal Processing Institute


Techniques for improving the performance of distributed video coding

Distributed Video Coding (DVC) is a recently proposed paradigm in video communication, which fits well emerging applications such as wireless video surveillance, multimedia sensor networks, wireless PC cameras, and mobile cameras phones. These applications require a low complexity encoding, while possibly affording a high complexity decoding. DVC presents several advantages: First, the complexity can be distributed between the encoder and the decoder. Second, the DVC is robust to errors, since it uses a channel code. In DVC, a Side Information (SI) is estimated at the decoder, using the available decoded frames, and used for the decoding and reconstruction of other frames. In this Ph.D thesis, we propose new techniques in order to improve the quality of the SI. First, successive refinement of the SI is performed after each decoded DCT band, using a Partially Decoded WZF (PDWZF), along with the ...

Abou-Elailah, Abdalbassir — Telecom Paristech


Robust and multiresolution video delivery : From H.26x to Matching pursuit based technologies

With the joint development of networking and digital coding technologies multimedia and more particularly video services are clearly becoming one of the major consumers of the new information networks. The rapid growth of the Internet and computer industry however results in a very heterogeneous infrastructure commonly overloaded. Video service providers have nevertheless to oer to their clients the best possible quality according to their respective capabilities and communication channel status. The Quality of Service is not only inuenced by the compression artifacts, but also by unavoidable packet losses. Hence, the packet video stream has clearly to fulll possibly contradictory requirements, that are coding eciency and robustness to data loss. The rst contribution of this thesis is the complete modeling of the video Quality of Service (QoS) in standard and more particularly MPEG-2 applications. The performance of Forward Error Control (FEC) ...

Frossard, Pascal — Swiss Federal Institute of Technology


Dynamic Scheme Selection in Image Coding

This thesis deals with the coding of images with multiple coding schemes and their dynamic selection. In our society of information highways, electronic communication is taking everyday a bigger place in our lives. The number of transmitted images is also increasing everyday. Therefore, research on image compression is still an active area. However, the current trend is to add several functionalities to the compression scheme such as progressiveness for more comfortable browsing of web-sites or databases. Classical image coding schemes have a rigid structure. They usually process an image as a whole and treat the pixels as a simple signal with no particular characteristics. Second generation schemes use the concept of objects in an image, and introduce a model of the human visual system in the design of the coding scheme. Dynamic coding schemes, as their name tells us, make ...

Fleury, Pascal — Swiss Federal Institute of Technology


Video Content Analysis by Active Learning

Advances in compression techniques, decreasing cost of storage, and high-speed transmission have facilitated the way videos are created, stored and distributed. As a consequence, videos are now being used in many applications areas. The increase in the amount of video data deployed and used in today's applications reveals not only the importance as multimedia data type, but also led to the requirement of efficient management of video data. This management paved the way for new research areas, such as indexing and retrieval of video with respect to their spatio-temporal, visual and semantic contents. This thesis presents work towards a unified framework for semi-automated video indexing and interactive retrieval. To create an efficient index, a set of representative key frames are selected which capture and encapsulate the entire video content. This is achieved by, firstly, segmenting the video into its constituent ...

Camara Chavez, Guillermo — Federal University of Minas Gerais


Traditional and Scalable Coding Techniques for Video Compression

In recent years, the usage of digital video has steadily been increasing. Since the amount of data for uncompressed digital video representation is very high, lossy source coding techniques are usually employed in digital video systems to compress that information and make it more suitable for storage and transmission. The source coding algorithms for video compression can be grouped into two big classes: the traditional and the scalable techniques. The goal of the traditional video coders is to maximize the compression efficiency corresponding to a given amount of compressed data. The goal of scalable video coding is instead to give a scalable representation of the source, such that subsets of it are able to describe in an optimal way the same video source but with reduced resolution in the temporal, spatial and/or quality domain. This thesis is focused on the ...

Cappellari, Lorenzo — University of Padova


Motion Estimation and Compensation of Video Sequences using Affine Transforms

Motion estimation and compensation is of great importance for the compression of video sequences. In this dissertation a motion estimation/compensation approach based on a non-overlapping connected mesh of triangles is proposed. To manipulate the triangles within the connected mesh or ‘rubber sheet’ structure affin transforms are used which allow many different types of motion to be accurately modelled. Another advantage of this structure is that the non-overlapping triangles do not generate the typical artefacts associated with the current block based standards when operating at very low bitrates. The initial motion estimation/ compensation algorithms investigated implement a full search method which updates one vertex at a time matching sets of triangles between adjacent frames. Although the prediction performance is good the resulting computational load is high. This issue is addressed by deriving gradient-based algorithms which are found to be between one ...

Bradshaw, David Benedict — University of Cambridge


ROBUST WATERMARKING TECHNIQUES FOR SCALABLE CODED IMAGE AND VIDEO

In scalable image/video coding, high resolution content is encoded to the highest visual quality and the bit-streams are adapted to cater various communication channels, display devices and usage requirements. These content adaptations, which include quality, resolution and frame rate scaling may also affect the content protection data, such as, watermarks and are considered as a potential watermark attack. In this thesis, research on robust watermarking techniques for scalable coded image and video, are proposed and the improvements in robustness against various content adaptation attacks, such as, JPEG 2000 for image and Motion JPEG 2000, MC-EZBC and H.264/SVC for video, are reported. The spread spectrum domain, particularly wavelet-based image watermarking schemes often provides better robustness to compression attacks due to its multi-resolution decomposition and hence chosen for this work. A comprehensive and comparative analysis of the available wavelet-based watermarking schemes,is performed ...

Bhowmik, Deepayan — University of Sheffield


Nonlinear rate control techniques for constant bit rate MPEG video coders

Digital visual communication has been increasingly adopted as an efficient new medium in a variety of different fields; multi-media computers, digital televisions, telecommunications, etc. Exchange of visual information between remote sites requires that digital video is encoded by compressing the amount of data and transmitting it through specified network connections. The compression and transmission of digital video is an amalgamation of statistical data coding processes, which aims at efficient exchange of visual information without technical barriers due to different standards, services, media, etc. It is associated with a series of different disciplines of digital signal processing, each of which can be applied independently. It includes a few different technical principles; distortion, rate theory, prediction techniques and control theory. The MPEG (Moving Picture Experts Group) video compression standard is based on this paradigm, thus, it contains a variety of different coding ...

Saw, Yoo-Sok — University Of Edinburgh


Video person recognition strategies using head motion and facial appearance

In this doctoral dissertation, we principally explore the use of the temporal information available in video sequences for person and gender recognition; in particular, we focus on the analysis of head and facial motion, and their potential application as biometric identifiers. We also investigate how to exploit as much video information as possible for the automatic recognition; more precisely, we examine the possibility of integrating the head and mouth motion information with facial appearance into a multimodal biometric system, and we study the extraction of novel spatio-temporal facial features for recognition. We initially present a person recognition system that exploits the unconstrained head motion information, extracted by tracking a few facial landmarks in the image plane. In particular, we detail how each video sequence is firstly pre-processed by semiautomatically detecting the face, and then automatically tracking the facial landmarks over ...

Matta, Federico — Eurécom / Multimedia communications


Distributed Video Coding for Wireless Lightweight Multimedia Applications

In the modern wireless age, lightweight multimedia technology stimulates attractive commercial applications on a grand scale as well as highly specialized niche markets. In this regard, the design of efficient video compression systems meeting such key requirements as very low encoding complexity, transmission error robustness and scalability, is no straightforward task. The answer can be found in fundamental information theoretic results, according to which efficient compression can be achieved by leveraging knowledge of the source statistics at the decoder only, giving rise to distributed, or alias Wyner-Ziv, video coding. This dissertation engineers efficient lightweight Wyner-Ziv video coding schemes emphasizing on several design aspects and applications. The first contribution of this dissertation focuses on the design of effective side information generation techniques so as to boost the compression capabilities of Wyner-Ziv video coding systems. To this end, overlapped block motion estimation ...

Deligiannis, Nikos — Vrije Universiteit Brussel


On-board Processing for an Infrared Observatory

During the past two decades, image compression has developed from a mostly academic Rate-Distortion (R-D) field, into a highly commercial business. Various lossless and lossy image coding techniques have been developed. This thesis represents an interdisciplinary work between the field of astronomy and digital image processing and brings new aspects into both of the fields. In fact, image compression had its beginning in an American space program for efficient data storage. The goal of this research work is to recognize and develop new methods for space observatories and software tools to incorporate compression in space astronomy standards. While the astronomers benefit from new objective processing and analysis methods and improved efficiency and quality, for technicians a new field of application and research is opened. For validation of the processing results, the case of InfraRed (IR) astronomy has been specifically analyzed. ...

Belbachir, Ahmed Nabil — Vienna University of Technology


Optimization of Video Streaming over 3G Networks

VIDEO streaming over cellular networks has been made possible in the last years by better performing video codecs and wireless cellular networks oriented to data transmission. The interaction between two heterogeneous worlds, the telecommunication infrastructure and the coding video software, calls for advanced optimization mechanisms. The actors involved in the optimization process are the cellular system's access network, UMTS and HSDPA, the wireless transmission channel and the fi nal user equipped with a mobile device capable of decoding video sequences. The knowledge and characterization of each of the building blocks allow the optimization of each element to the specifi c needs of the others. This doctoral thesis discusses three main contributions. In the fi rst part, the e ffects of transmission errors on video streams are analyzed. Incorrectly received video packets are usually discarded by the lower layers and not ...

Superiori, Luca — Vienna University of Technology


Video Quality Estimation for Mobile Video Streaming

For the provisioning of video streaming services it is essential to provide a required level of customer satisfaction, given by the perceived video stream quality. It is therefore important to choose the compression parameters as well as the network settings so that they maximize the end-user quality. Due to video compression improvements of the newest video coding standard H.264/AVC, video streaming for low bit and frame rates is possible while preserving its perceptual quality. This is especially suitable for video applications in 3G wireless networks. Mobile video streaming is characterized by low resolutions and low bitrates. The commonly used resolutions are Quarter Common Intermediate Format (QCIF,176x144 pixels) for cell phones, Common Intermediate Format (CIF, 352x288 pixels) and Standard Interchange Format (SIF or QVGA, 320x240 pixels) for data-cards and palmtops (PDA). The mandatory codec for Universal Mobile Telecommunications System (UMTS) streaming ...

Ries, Michal — Vienna University of Technology


3D motion capture by computer vision and virtual rendering

Networked 3D virtual environments allow multiple users to interact with each other over the Internet. Users can share some sense of telepresence by remotely animating an avatar that represents them. However, avatar control may be tedious and still render user gestures poorly. This work aims at animating a user‟s avatar from real time 3D motion capture by monoscopic computer vision, thus allowing virtual telepresence to anyone using a personal computer with a webcam. The approach followed consists of registering a 3D articulated upper-body model to a video sequence. This involves searching iteratively for the best match between features extracted from the 3D model and from the image. A two-step registration process matches regions and then edges. The first contribution of this thesis is a method of allocating computing iterations under real-time constrain that achieves optimal robustness and accuracy. The major ...

Gomez Jauregui, David Antonio — Telecom SudParis

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.