Exploiting Prior Information in Parametric Estimation Problems for Multi-Channel Signal Processing Applications (2013)
Direction Finding In The Presence of Array Imperfections, Model Mismatches and Multipath
In direction finding (DF) applications, there are several factors affecting the estimation accuracy of the direction-of-arrivals (DOA) of unknown source locations. The major distortions in the estimation process are due to the array imperfections, model mismatches and multipath. The array imperfections usually exist in practical applications due to the nonidealities in the antenna array such as mutual coupling (MC) and gain/phase uncertainties. The model mismatches usually occur when the model of the received signal differs from the signal model used in the processing stage of the DF system. Another distortion is due to multipath signals. In the multipath scenario, the antenna array receives the transmitted signal from more than one path with different directions and the array covariance matrix is rank-deficient. In this thesis, three new methods are proposed for the problems in DF applications in the presence of array ...
Elbir, Ahmet M. — Middle East Technical Univresity
Partial Relaxation: A Computationally Efficient Direction-of-Arrival Estimation Framework
Direction-of-Arrival (DOA) estimation from data collected at a sensor array in the presence of noise has been a fundamental and long-established research topic of interest in sensor array processing. The application of DOA estimation does not only restrict to radar but also spans multiple additional fields of research, including radio astronomy, biomedical imaging, seismic exploration, wireless communication, among others. Due to the wide applications of DOA estimation, various methods have been developed in the literature to increase the resolution capability, computational efficiency, and robustness of the algorithms. However, a trade-off between the estimation performance and the computational complexity is generally inevitable. This thesis addresses the challenge of developing low-complexity DOA estimators with the ability to resolve closely spaced source signals in the threshold region, i.e., low sample size or low Signal-to-Noise ratio. Motivated by various interpretations of the conventional DOA ...
Trinh Hoang, Minh — Technical University of Darmstadt
Bayesian Compressed Sensing using Alpha-Stable Distributions
During the last decades, information is being gathered and processed at an explosive rate. This fact gives rise to a very important issue, that is, how to effectively and precisely describe the information content of a given source signal or an ensemble of source signals, such that it can be stored, processed or transmitted by taking into consideration the limitations and capabilities of the several digital devices. One of the fundamental principles of signal processing for decades is the Nyquist-Shannon sampling theorem, which states that the minimum number of samples needed to reconstruct a signal without error is dictated by its bandwidth. However, there are many cases in our everyday life in which sampling at the Nyquist rate results in too many data and thus, demanding an increased processing power, as well as storage requirements. A mathematical theory that emerged ...
Tzagkarakis, George — University of Crete
Sparse Array Signal Processing
This dissertation details three approaches for direction-of-arrival (DOA) estimation or beamforming in array signal processing from the perspective of sparsity. In the first part of this dissertation, we consider sparse array beamformer design based on the alternating direction method of multipliers (ADMM); in the second part of this dissertation, the problem of joint DOA estimation and distorted sensor detection is investigated; and off-grid DOA estimation is studied in the last part of this dissertation. In the first part of this thesis, we devise a sparse array design algorithm for adaptive beamforming. Our strategy is based on finding a sparse beamformer weight to maximize the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes ADMM, and admits closed-form solutions at each ADMM iteration. The algorithm convergence properties are analyzed by showing the monotonicity and boundedness of the augmented Lagrangian function. In addition, ...
Huang, Huiping — Darmstadt University of Technology
Robust Direction-of-Arrival estimation and spatial filtering in noisy and reverberant environments
The advent of multi-microphone setups on a plethora of commercial devices in recent years has generated a newfound interest in the development of robust microphone array signal processing methods. These methods are generally used to either estimate parameters associated with acoustic scene or to extract signal(s) of interest. In most practical scenarios, the sources are located in the far-field of a microphone array where the main spatial information of interest is the direction-of-arrival (DOA) of the plane waves originating from the source positions. The focus of this thesis is to incorporate robustness against either lack of or imperfect/erroneous information regarding the DOAs of the sound sources within a microphone array signal processing framework. The DOAs of sound sources is by itself important information, however, it is most often used as a parameter for a subsequent processing method. One of the ...
Chakrabarty, Soumitro — Friedrich-Alexander Universität Erlangen-Nürnberg
Direction of Arrival Estimation and Localization Exploiting Sparse and One-Bit Sampling
Data acquisition is a necessary first step in digital signal processing applications such as radar, wireless communications and array processing. Traditionally, this process is performed by uniformly sampling signals at a frequency above the Nyquist rate and converting the resulting samples into digital numeric values through high-resolution amplitude quantization. While the traditional approach to data acquisition is straightforward and extremely well-proven, it may be either impractical or impossible in many modern applications due to the existing fundamental trade-off between sampling rate, amplitude quantization precision, implementation costs, and usage of physical resources, e.g. bandwidth and power consumption. Motivated by this fact, system designers have recently proposed exploiting sparse and few-bit quantized sampling instead of the traditional way of data acquisition in order to reduce implementation costs and usage of physical resources in such applications. However, before transition from the tradition data ...
Saeid Sedighi — University of Luxembourg
Array Signal Processing Algorithms for Beamforming and Direction Finding
Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptive array processing algorithms have been reported in the literature in the last several decades. These algorithms, in a general view, exhibit a trade-off between performance and required computational complexity. In this thesis, we focus on the development of array processing algorithms in the application of beamforming and direction of arrival (DOA) estimation. In the beamformer design, we employ the constrained minimum variance (CMV) and the constrained constant modulus (CCM) criteria to propose full-rank and reduced-rank adaptive algorithms. Specifically, for the full-rank algorithms, we present two low-complexity adaptive step size mechanisms with the CCM criterion for the step size adaptation of the ...
Lei Wang — University of York
Signal acquisition is a main topic in signal processing. The well-known Shannon-Nyquist theorem lies at the heart of any conventional analog to digital converters stating that any signal has to be sampled with a constant frequency which must be at least twice the highest frequency present in the signal in order to perfectly recover the signal. However, the Shannon-Nyquist theorem provides a worst-case rate bound for any bandlimited data. In this context, Compressive Sensing (CS) is a new framework in which data acquisition and data processing are merged. CS allows to compress the data while is sampled by exploiting the sparsity present in many common signals. In so doing, it provides an efficient way to reduce the number of measurements needed for perfect recovery of the signal. CS has exploded in recent years with thousands of technical publications and applications ...
Lagunas, Eva — Universitat Politecnica de Catalunya
This thesis is concerned with three closely related problems. The first one is called Multiple-Input Multiple-Output (MIMO) Instantaneous Blind Identification, which we denote by MIBI. In this problem a number of mutually statistically independent source signals are mixed by a MIMO instantaneous mixing system and only the mixed signals are observed, i.e. both the mixing system and the original sources are unknown or ‘blind’. The goal of MIBI is to identify the MIMO system from the observed mixtures of the source signals only. The second problem is called Instantaneous Blind Signal Separation (IBSS) and deals with recovering mutually statistically independent source signals from their observed instantaneous mixtures only. The observation model and assumptions on the signals and mixing system are the same as those of MIBI. However, the main purpose of IBSS is the estimation of the source signals, whereas ...
van de Laar, Jakob — TU Eindhoven
Fundamental Frequency and Direction-of-Arrival Estimation for Multichannel Speech Enhancement
Audio systems receive the speech signals of interest usually in the presence of noise. The noise has profound impacts on the quality and intelligibility of the speech signals, and it is therefore clear that the noisy signals must be cleaned up before being played back, stored, or analyzed. We can estimate the speech signal of interest from the noisy signals using a priori knowledge about it. A human speech signal is broadband and consists of both voiced and unvoiced parts. The voiced part is quasi-periodic with a time-varying fundamental frequency (or pitch as it is commonly referred to). We consider the periodic signals basically as the sum of harmonics. Therefore, we can pass the noisy signals through bandpass filters centered at the frequencies of the harmonics to enhance the signal. In addition, although the frequencies of the harmonics are the ...
Karimian-Azari, Sam — Aalborg Univeristy
Enhancement of Periodic Signals: with Application to Speech Signals
The topic of this thesis is the enhancement of noisy, periodic signals with application to speech signals. Generally speaking, enhancement methods can be divided into signal- and noise-driven methods. In this thesis, we focus on the signal-driven approach by employing relevant signal parameters for the enhancement of periodic signals. The enhancement problem consists of two major subproblems: the estimation of relevant parameters or statistics, and the actual noise reduction of the observed signal. We consider both of these subproblems. First, we consider the problem of estimating signal parameters relevant to the enhancement of periodic signals. The fundamental frequency is one example of such a parameter. Furthermore, in multichannel scenarios, the direction-of-arrival of the periodic sources onto an array of sensors is another parameter of relevance. We propose methods for the estimation of the fundamental frequency that have benefits compared to ...
Jensen, Jesper Rindom — Aalborg University
Generalized Consistent Estimation in Arbitrarily High Dimensional Signal Processing
The theory of statistical signal processing finds a wide variety of applications in the fields of data communications, such as in channel estimation, equalization and symbol detection, and sensor array processing, as in beamforming, and radar systems. Indeed, a large number of these applications can be interpreted in terms of a parametric estimation problem, typically approached by a linear filtering operation acting upon a set of multidimensional observations. Moreover, in many cases, the underlying structure of the observable signals is linear in the parameter to be inferred. This dissertation is devoted to the design and evaluation of statistical signal processing methods under realistic implementation conditions encountered in practice. Traditional statistical signal processing techniques intrinsically provide a good performance under the availability of a particularly high number of observations of fixed dimension. Indeed, the original optimality conditions cannot be theoretically guaranteed ...
Rubio, Francisco — Universitat Politecnica de Catalunya
Space-Time Block Coding for Multiple Antenna Systems
The demand for mobile communication systems with high data rates has dramatically increased in recent years. New methods are necessary in order to satisfy this huge communications demand, exploiting the limited resources such as bandwidth and power as efficient as possible. MIMO systems with multiple an- tenna elements at both link ends are an efficient solution for future wireless communications systems as they provide high data rates by exploiting the spatial domain under the constraints of limited bandwidth and transmit power. Space-Time Block Coding (STBC) is a MIMO transmit strategy which exploits transmit diversity and high reliability. STBCs can be divided into two main classes, namely, Orthogonal Space-Time Block Codes (OSTBCs) and Non-Orthogonal Space-Time Block Codes (NOSTBCs). The Quasi-Orthogonal Space-Time Block Codes (QSTBCs) belong to class of NOSTBCs and have been an intensive area of research. The OSTBCs achieve full ...
Badic, B. — Vienna University of Technology
Enhancement of Speech Signals - with a Focus on Voiced Speech Models
The topic of this thesis is speech enhancement with a focus on models of voiced speech. Speech is divided into two subcategories dependent on the characteristics of the signal. One part is the voiced speech, the other is the unvoiced. In this thesis, we primarily focus on the voiced speech parts and utilise the structure of the signal in relation to speech enhancement. The basis for the models is the harmonic model which is a very often used model for voiced speech because it describes periodic signals perfectly. First, we consider the problem of non-stationarity in the speech signal. The speech signal changes its characteristics continuously over time whereas most speech analysis and enhancement methods assume stationarity within 20-30 ms. We propose to change the model to allow the fundamental frequency to vary linearly over time by introducing a chirp ...
Nørholm, Sidsel Marie — Aalborg University
Nowadays, Nuclear Magnetic Resonance (NMR) is widely used in oncology as a non-invasive diagnostic tool in order to detect the presence of tumor regions in the human body. An application of NMR is Magnetic Resonance Imaging, which is applied in routine clinical practice to localize tumors and determine their size. Magnetic Resonance Imaging is able to provide an initial diagnosis, but its ability to delineate anatomical and pathological information is significantly improved by its combination with another NMR application, namely Magnetic Resonance Spectroscopy. The latter reveals information on the biochemical profile tissues, thereby allowing clinicians and radiologists to identify in a non{invasive way the different tissue types characterizing the sample under investigation, and to study the biochemical changes underlying a pathological situation. In particular, an NMR application exists which provides spatial as well as biochemical information. This application is called ...
Laudadio, Teresa — Katholieke Universiteit Leuven
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.