WATERMARKING FOR 3D REPRESENTATIONS

In this thesis, a number of novel watermarking techniques for different 3D representations are presented. A novel watermarking method is proposed for the mono-view video, which might be interpreted as the basic implicit representation of 3D scenes. The proposed method solves the common flickering problem in the existing video watermarking schemes by means of adjusting the watermark strength with respect to temporal contrast thresholds of human visual system (HVS), which define the maximum invisible distortions in the temporal direction. The experimental results indicate that the proposed method gives better results in both objective and subjective measures, compared to some recognized methods in the literature. The watermarking techniques for the geometry and image based representations of 3D scenes, denoted as 3D watermarking, are examined and classified into three groups, as 3D-3D, 3D-2D and 2D-2D watermarking, in which the pair of symbols ...

Koz, Alper — Middle East Technical University, Department of Electrical and Electronics Engineering


Three dimensional shape modeling: segmentation, reconstruction and registration

Accounting for uncertainty in three-dimensional (3D) shapes is important in a large number of scientific and engineering areas, such as biometrics, biomedical imaging, and data mining. It is well known that 3D polar shaped objects can be represented by Fourier descriptors such as spherical harmonics and double Fourier series. However, the statistics of these spectral shape models have not been widely explored. This thesis studies several areas involved in 3D shape modeling, including random field models for statistical shape modeling, optimal shape filtering, parametric active contours for object segmentation and surface reconstruction. It also investigates multi-modal image registration with respect to tumor activity quantification. Spherical harmonic expansions over the unit sphere not only provide a low dimensional polarimetric parameterization of stochastic shape, but also correspond to the Karhunen-Lo´eve (K-L) expansion of any isotropic random field on the unit sphere. Spherical ...

Li, Jia — University of Michigan


Robust Signal Processing with Applications to Positioning and Imaging

This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...

Li, Haoqing — Northeastern University


Communication Rates for Fading Channels with Imperfect Channel-State Information

An important specificity of wireless communication channels are the rapid fluctuations of propagation coefficients. This effect is called fading and is caused by the motion of obstacles, scatterers and reflectors standing along the different paths of electromagnetic wave propagation between the transmitting and the receiving terminal. These changes in the geometry of the wireless channel prompt the attenuation coefficients and the relative phase shifts between the multiple propagation paths to vary. This suggests to model the channel coefficients (the transfer matrix) as random variables. The present thesis studies information rates for reliable transmission of information over fading channels under the realistic assumption that the receiver has only imperfect knowledge of the random fading state. While the over-idealized assumption of perfect channel-state information at the receiver (CSIR) gives rise to many simple expressions and is fairly well understood, the settings with ...

Pastore, Adriano — Universitat Politècnica de Catalunya


Spatial Consistency of 3D Channel Models

Developing realistic channel models is one of the greatest challenges for describing wireless communications. Their quality is crucial for accurately predicting the performance of a wireless system. While on the one hand, channel models have to be accurate in describing the physical properties of wave propagation, on the other hand, they have to be as least complex as possible. With the recent emergence of antennas with a massive amount of elements as a promising technology for a further enhancement of spectral efficiency, new channel models that characterize the propagation environment in both azimuth and elevation become necessary. While standardization bodies such as 3rd Generation Partnership Project (3GPP) and International Telecommunications Unit (ITU) have introduced a 3-dimensional (3D) geometry-based stochastic channel model, a system-level modeling has been missing to serve the purpose of further analysis and evaluations. Furthermore, with such a ...

Fjolla Ademaj — TU Wien


Advanced Coding Technologies For Medical and Holographic Imaging: Algorithms, Implementations and Standardization

Medical and holographic imaging modalities produce large datasets that require efficient compression mechanisms for storage and transmission. This PhD dissertation proposes state-of-the-art technology extensions for JPEG coding standards to improve their performance in the aforementioned application domains. Modern hospitals rely heavily on volumetric images, such as produced by CT and MRI scanners. In fact, the completely digitized medical work flow, the improved imaging scanner technologies and the importance of volumetric image data sets have led to an exponentially increasing amount of data, raising the necessity for more efficient compression techniques with support for progressive quality and resolution scalability. For this type of imagery, a volumetric extension of the JPEG 2000 standard was created, called JP3D. In addition, improvements to JP3D, being alternative wavelet filters, directional wavelets and an intra-band prediction mode, were proposed and their applicability was evaluated. Holographic imaging, ...

Bruylants, Tim — Vrije Universiteit Brussel


Spatiotonal Adaptivity in Super-Resolution of under-sampled Image Sequences

This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4), super-resolution restoration (chapter 5), and super-resolution synthesis (chapter 6). Chapter 2 derives the Cramer-Rao lower bound of image registration and shows that iterative gradient-based estimators achieve this performance limit. Chapter 3 presents an algorithm for image fusion of irregularly sampled and uncertain data using robust normalized convolution. The size and shape of the fusion kernel is adapted to local curvilinear structures in the image. Each data sample is assigned an intensity-related certainty value to limit the influence of outliers. Chapter 4 presents two fast implementations of the signal-adaptive bilateral filter. The xy-separable implementation filters ...

Pham, Tuan Q. — Delft University of Technology


Combining anatomical and spectral information to enhance MRSI resolution and quantification: Application to Multiple Sclerosis

Multiple sclerosis is a progressive autoimmune disease that a˙ects young adults. Magnetic resonance (MR) imaging has become an integral part in monitoring multiple sclerosis disease. Conventional MR imaging sequences such as fluid attenuated inversion recovery imaging have high spatial resolution, and can visualise the presence of focal white matter brain lesions in multiple sclerosis disease. Manual delineation of these lesions on conventional MR images is time consuming and su˙ers from intra and inter-rater variability. Among the advanced MR imaging techniques, MR spectroscopic imaging can o˙er complementary information on lesion characterisation compared to conventional MR images. However, MR spectroscopic images have low spatial resolution. Therefore, the aim of this thesis is to automatically segment multiple sclerosis lesions on conventional MR images and use the information from high-resolution conventional MR images to enhance the resolution of MR spectroscopic images. Automatic single time ...

Jain, Saurabh — KU Leuven


Single-pixel imaging: development and applications of adaptive methods

Single-pixel imaging is a recent paradigm that allows the acquisition of images at reasonably low cost by exploiting hardware compression of the data. The architecture of a single-pixel camera consists of only two elements: a spatial light modulator, and a single-point detector. The key idea is to measure the projection at the detector (i.e., the inner product) of the scene under view -the image- with some patterns. The post-processing of a sequence of measurements obtained with different patterns permits the restoring of the desired image. Single-pixel imaging has several advantages, which are of interest for different applications, and especially in the biomedical field. In particular, a time-resolved single-pixel imaging system benefits fluorescence lifetime sensing. Such a set-up can be coupled to a spectrometer, to supplement the lifetime with spectral information. However, the main limitation of single-pixel imaging is the speed ...

Rousset, Florian — University of Lyon - Politecnico di Milan


Progressive visualization of incomplete sonar-data sets: from sea-bottom interpolation and segmentation to geometry extraction

This thesis describes a visualization pipeline for sonar profiling data that show reflections of multiple sediments in the sea bottom and that cover huge survey areas with many gaps. Visualizing such data is not trivial, because they may be noisy and because data sets may be very large. The developed techniques are: (1) Quadtree interpolation for estimating new sediment reflections, at all gaps in the longitude-latitude plane. The quadtree is used for guiding the 3D interpolation process: gaps become small at low spatial resolutions, where they can be filled by interpolating between available reflections. In the interpolation, the reflection data are cross correlated in order to construct continuity of multiple, sloping reflections. (2) Segmentation and boundary refinement in an octree in order to detect sediments in the sonar data. In the refinement, coarse boundaries are reclassified by filtering the data ...

Loke, Robert Edward — Delft University of Technology


Audio Visual Speech Enhancement

This thesis presents a novel approach to speech enhancement by exploiting the bimodality of speech production and the correlation that exists between audio and visual speech information. An analysis into the correlation of a range of audio and visual features reveals significant correlation to exist between visual speech features and audio filterbank features. The amount of correlation was also found to be greater when the correlation is analysed with individual phonemes rather than across all phonemes. This led to building a Gaussian Mixture Model (GMM) that is capable of estimating filterbank features from visual features. Phoneme-specific GMMs gave lower filterbank estimation errors and a phoneme transcription is decoded using audio-visual Hidden Markov Model (HMM). Clean filterbank estimates along with mean noise estimates were then utilised to construct visually-derived Wiener filters that are able to enhance noisy speech. The mean noise ...

Almajai, Ibrahim — University of East Anglia


Mixed structural models for 3D audio in virtual environments

In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...

Geronazzo, Michele — University of Padova


Unsupervised and semi-supervised Non-negative Matrix Factorization methods for brain tumor segmentation using multi-parametric MRI data

Gliomas represent about 80% of all malignant primary brain tumors. Despite recent advancements in glioma research, patient outcome remains poor. The 5 year survival rate of the most common and most malignant subtype, i.e. glioblastoma, is about 5%. Magnetic resonance imaging (MRI) has become the imaging modality of choice in the management of brain tumor patients. Conventional MRI (cMRI) provides excellent soft tissue contrast without exposing the patient to potentially harmful ionizing radiation. Over the past decade, advanced MRI modalities, such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have gained interest in the clinical field, and their added value regarding brain tumor diagnosis, treatment planning and follow-up has been recognized. Tumor segmentation involves the imaging-based delineation of a tumor and its subcompartments. In gliomas, segmentation plays an important role in treatment planning as well ...

Sauwen, Nicolas — KU Leuven


Bayesian Fusion of Multi-band Images: A Powerful Tool for Super-resolution

Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands (a three dimensional data cube), has opened a new range of relevant applications, such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However, while HS sensors provide abundant spectral information, their spatial resolution is generally more limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fusing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but lower spectral resolution, also known as multi-resolution image fusion, has been explored for many years [AMV+11]. From an application point of view, this problem is also important as motivated by recent national programs, e.g., the Japanese next-generation space-borne ...

Wei, Qi — University of Toulouse


Distributed Compressed Representation of Correlated Image Sets

Vision sensor networks and video cameras find widespread usage in several applications that rely on effective representation of scenes or analysis of 3D information. These systems usually acquire multiple images of the same 3D scene from different viewpoints or at different time instants. Therefore, these images are generally correlated through displacement of scene objects. Efficient compression techniques have to exploit this correlation in order to efficiently communicate the 3D scene information. Instead of joint encoding that requires communication between the cameras, in this thesis we concentrate on distributed representation, where the captured images are encoded independently, but decoded jointly to exploit the correlation between images. One of the most important and challenging tasks relies in estimation of the underlying correlation from the compressed correlated images for effective reconstruction or analysis in the joint decoder. This thesis focuses on developing efficient ...

Thirumalai, Vijayaraghavan — EPFL, Switzerland

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.