Energy Efficient Network for Rural Broadband Access

This thesis proposes and discusses aspects of a low-cost wireless network called “Hopscotch” as a potential solution to the rural broadband problem. Providing broadband internet access to rural locations is challenging due to the long distances between internet backbone and households, the sparse population density and difficult terrain. Hopscotch uses a network of renewable powered base stations, termed “WindFi”, connected by point-to-point links, to deliver internet access to rural communities. A combination of frequency bands are used within Hopscotch. Standard IEEE 802.11 5GHz WiFi access technology is used for high capacity links, and an ultra high frequency TV “white space” spectrum overlay in the 600-800 MHz band provides long distance coverage. The advantages of “white space” spectrum are demonstrated for a rural wireless scenario; reducing the number of base stations required to cover a community and decreasing the transmit power ...

McGuire, Colin — University of Strathclyde


Optimization of Positioning Capabilities in Wireless Sensor Networks: from power efficiency to medium access

In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime ofWSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the ...

Moragrega, Ana — Universitat Politecnica de Catalunya


On the Energy Efficiency of Cooperative Wireless Networks

The aim of this dissertation is the study of cooperative communications in wireless networks. In cooperative networks, each user transmits its own data and also aids the communication of other users. User cooperation is particularly attractive for the wireless medium, where every user listens to the transmission of other users. The main benefit of user cooperation in wireless networks is, probably, its efficacy to combat the wireless channel impairments. Path loss and shadowing effects are overcome using intermediate nodes, with better channel conditions, to retransmit the received signal to the estination. Further, the channel fading effect can be also mitigated by means of cooperative spatial diversity (the information arrives at the destination through multiple independent paths). These benefits result in an increase of the users spectral efficiency and/or savings on the overall network power resource. Besides these gains, the simple ...

Gomez-Vilardebo, Jesus — Universidad Politecnica de Madrid


Towards Zero-Power Wireless Machine-to-Machine Networks

This thesis aims at contributing to overcome two of the main challenges for the deployment of highly dense wireless M2M networks in data collection scenarios for the Internet of Things: the management of massive numbers of end-devices that attempt to get access to the wireless channel; and the need to extend the network lifetime to reduce maintenance costs. In order to solve these challenges, two complementary strategies are considered. Firstly, the thesis focuses on the design, analysis and performance evaluation of random and hybrid access protocols that can handle abrupt transitions in the traffic load and minimize the energy consumption devoted to communications. And secondly, the use of energy harvesting (EH) is considered in order to provide the network with unlimited lifetime. To this end, the second part of the thesis focuses on the design and analysis of EH-aware MAC ...

Vazquez-Gallego, Francisco — Universitat Politècnica de Catalunya


Collision Recovery Receivers for RFIDs

Radio Frequency Identification (RFID) is a very fast emerging technology that wirelessly transmits the identity of a tag attached to an object or a person. It usually operates in a dense tag environment. My work is focused on passive Ultra High Frequency (UHF) tags whose transmission on the Medium Access Control (MAC) layer is scheduled by Framed Slotted Aloha (FSA). In this thesis, I propose the use of multiple antennas at the reader side in order to recover from collision. By exploiting the fact that a tag signal is real-valued while all other components of a received signal are complexed-valued, I have separated real and imaginary part and in that way I have achieved a recovery from a collision that contains a two times higher number of tags than the number of the receive antennas at the reader, under perfect ...

Kaitovic, Jelena — TU Wien


Design and Analysis of Duplexing Modes and Forwarding Protocols for OFDM(A) Relay Links

Relaying, i.e., multihop communication via so-called relay nodes, has emerged as an advanced technology for economically realizing long transmission ranges and high data rates in wireless systems. The focus of this thesis is on multihop multiuser systems where signals are modulated with orthogonal frequency-division multiplexing or multiple access, i.e., OFDM(A), and relays are infrastructure-based network nodes. In general, the thesis contributes by investigating how to operate relay links optimally under spectrum, transmit power and processing capability limitations, as well as how to improve signal processing in relays by exploiting other advanced concepts such as multiantenna techniques, spectrum reuse, transmit power adaptation, and new options for multicarrier protocol design. The first theme is the design and analysis of duplexing modes which define how a relay link reuses allocated frequency bands in each hop. Especially, the full-duplex relaying mode is promoted as ...

Riihonen, Taneli — Aalto University


Energy-Efficient Distributed Multicast Beamforming Using Iterative Second-Order Cone Programming

In multi-user (MU) downlink beamforming, a high spectral efficiency along with a low transmit power is achieved by separating multiple users in space rather than in time or frequency using spatially selective transmit beams. For streaming media applications, multi-group multicast (MGM) downlink beamforming is a promising approach to exploit the broadcasting property of the wireless medium to transmit the same information to a group of users. To limit inter-group interference, the individual streams intended for different multicast groups are spatially separated using MGM downlink beamforming. Spatially selective downlink beamforming requires the employment of an array of multiple antennas at the base station (BS). The hardware costs associated with the use of multiple antennas may be prohibitive in practice. A way to avoid the expensive employment of multiple antennas at the BS is to exploit user cooperation in wireless networks where ...

Bornhorst, Nils — Technische Universität Darmstadt


Advanced Multi-Dimensional Signal Processing for Wireless Systems

The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...

Cheng, Yao — Ilmenau University of Technology


Distributed Signal Processing Algorithms for Wireless Networks

Distributed signal processing algorithms have become a key approach for statistical inference in wireless networks and applications such as wireless sensor networks and smart grids. It is well known that distributed processing techniques deal with the extraction of information from data collected at nodes that are distributed over a geographic area. In this context, for each specific node, a set of neighbor nodes collect their local information and transmit the estimates to a specific node. Then, each specific node combines the collected information together with its local estimate to generate an improved estimate. In this thesis, novel distributed cooperative algorithms for inference in ad hoc, wireless sensor networks and smart grids are investigated. Low-complexity and effective algorithms to perform statistical inference in a distributed way are devised. A number of innovative approaches for dealing with node failures, compression of data ...

Xu, Songcen — University of York


Device-to-Device Wireless Communications

Device-to-Device (D2D) is one of the important proposed solutions to increase the capacity, offload the traffic, and improve the energy effciency in next generation cellular networks. D2D communication is known as a direct communication between two users without using cellular infrastructure networks. Despite of large expected bene fits in terms of capacity in D2D, the coexistence of D2D and cellular networks in the same spectrum creates new challenges in interference management and network design. To limit the interference power control schemes on cellular networks and D2D networks are typically adopted. Even though power control is introduced to limit the interference level, it does not prevent cellular and D2D users from experiencing coverage limitation when sharing the same radio resources. Therefore, the design of such networks requires the availability of suitable methods able to properly model the eff ect of interference ...

Alhalabi, Ashraf S.A. — Universita Degli Sudi di Bologna


Digital compensation of front-end non-idealities in broadband communication systems

The wireless communication industry has seen a tremendous growth in the last few decades. The ever increasing demand to stay connected at home, work, and on the move, with voice and data applications, has continued the need for more sophisticated end-user devices. A typical smart communication device these days consists of a radio system that can access a mixture of mobile cellular services (GSM, UMTS, etc), indoor wireless broadband services (WLAN-802.11b/g/n), short range and low energy personal communications (Bluetooth), positioning and navigation systems (GPS), etc. A smart device capable of meeting all these requirements has to be highly flexible and should be able to reconfigure radio transmitters and receivers as and when required. Further, the radio modules used in these devices should be extremely small so that the device itself is portable. In addition, the device should also be economical ...

Tandur, Deepaknath — Katholieke Universiteit Leuven


Distributed Space-Time Coding Techniques with Limited Feedback in Cooperative MIMO Networks

Multi-input multi-output (MIMO) wireless networks and distributed MIMO relaying wireless networks have attracted significant attention in current generation of wireless communication networks, and will play a key role in the next generation of wireless net- works. The improvement of network capacity, data rate and reliability can be achieved at the cost of increasing computational complexity of employing space-time coding (STC) and distributed STC (DSTC) in MIMO and distributed MIMO relaying networks, respectively. Efficient designs and algorithms to achieve high diversity and coding gains with low computational complexity in encoding and decoding of STC and DSTC schemes are essential. In this thesis, DSTC designs with high diversity and coding gains and efficient detection and code matrices optimization algorithms in cooperative MIMO networks are proposed. Firstly, adaptive power allocation (PA) algorithms with different criteria for a coop- erative MIMO network equipped with ...

Peng, Tong — University of York


Cooperative Techniques for Interference Management in Wireless Networks

In the last few years, wireless devices have evolved to unimaginable heights. Current forecasts suggest that, in the near future, every device that may take advantage of a wireless connection will have one. In addition, there is a gradual migration to smart devices and high-speed connections, and, as a consequence, the overall mobile traffic is expected to experience a tremendous growth in the next years. The multiuser interference will hence become the main limiting factor and the most critical point to address. As instrumental to efficiently manage interference between different systems, this thesis provides a thorough study on cooperative techniques. That is, users share information and exploit it to improve the overall performance. Since multiuser cooperation represents a very broad term, we will focus on algorithm design and transceiver optimization for three cooperative scenarios that capture some of the main ...

Lameiro, Christian — University of Cantabria


Ad hoc Wireless Networks with Femto-Cell Deployment: A Study

Nowadays, with a worldwide market penetration of over 50% in the mobile telecommunications sector, there is also an unrelenting demand from the subscribers for ever increasing transmission rates and availability of broadband-like experience on the handset. Due to this, research in next-generation networks is rife. Such systems are expected to achieve peak data rates of up to 1 Gbps through the use of innovative technologies such as multiple-input and multiple- output (MIMO) and orthogonal frequency division multiple access (OFDMA). Two more ways of boosting capacity have also been identified: shrinking cell sizes and greater reuse of resources in the same area. This forms the foundation of the research presented in this thesis. For operators, the costs involved with planning and deploying additional network infrastructure to provide a dense coverage of small, high capacity cells cannot be justified. Femto-cells, however, promise ...

Bharucha, Zubin — University of Edinburgh


Adaptive Communications for Next Generation Broadband Wireless Access Systems

In Broadband Wireless Access systems the efficient use of the resources is crucial from many points of views. From the operator point of view, the bandwidth is a scarce, valuable, and expensive resource which must be exploited in an efficient manner while the Quality of Service (QoS) provided to the users is guaranteed. On the other hand, a tight delay and link quality constraints are imposed on each data flow hence the user experiences the same quality as in fixed networks. During the last few years many techniques have been developed in order to increase the spectral efficiency and the throughput. Among them, the use of multiple antennas at the transmitter and the receiver (exploiting spatial multiplexing) with the joint optimization of the medium access control layer and the physical layer parameters. In this Ph.D. thesis, different adaptive techniques for ...

Ismael Gutierrez González — Universitat Ramon Llull

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.