Compressive Sensing of Cyclostationary Propeller Noise

This dissertation is the combination of three manuscripts –either published in or submitted to journals– on compressive sensing of propeller noise for detection, identification and localization of water crafts. Propeller noise, as a result of rotating blades, is broadband and radiates through water dominating underwater acoustic noise spectrum especially when cavitation develops. Propeller cavitation yields cyclostationary noise which can be modeled by amplitude modulation, i.e., the envelope-carrier product. The envelope consists of the so-called propeller tonals representing propeller characteristics which is used to identify water crafts whereas the carrier is a stationary broadband process. Sampling for propeller noise processing yields large data sizes due to Nyquist rate and multiple sensor deployment. A compressive sensing scheme is proposed for efficient sampling of second-order cyclostationary propeller noise since the spectral correlation function of the amplitude modulation model is sparse as shown in ...

Fırat, Umut — Istanbul Technical University


Advanced Tracking Loop Architectures for Multi-frequency GNSS Receiver

The multi-frequency Global Navigation Satellite System (GNSS) signals are designed to overcome the inherent performance limitations of single-frequency receivers. However, the processing of multiple frequency signals in a time-varying GNSS signal environment which are potentially affected by multipath, ionosphere scintillation, blockage, and interference is quite challenging, as each signal is influenced differently by channel effects according to its Radio Frequency (RF). In order to get the benefit of synchronously/coherently generated multiple frequency signals, advanced receiver signal processing techniques need to be developed. The aim of this research thesis is to extract the best performance benefits out of multifrequency GNSS signals in a time-varying GNSS signal environment. To accomplish this objective, it is necessary to analyze the multi-frequency signal characteristics and to investigate suitable signal processing algorithms in order to enable the best performance of each signal. The GNSS receiver position ...

Bolla, Padma — Tampere University of Technology, Finland and Samara University, Russia


Advanced Signal Processing Techniques for Global Navigation Satellite Systems

This Dissertation addresses the synchronization problem using an array of antennas in the general framework of Global Navigation Satellite Systems (GNSS) receivers. Positioning systems are based on time delay and frequency-shift estimation of the incoming signals in the receiver side, in order to compute the user's location. Sources of accuracy degradation in satellite-based navigation systems are well-known, and their mitigation has deserved the attention of a number of researchers in latter times. While atmospheric-dependant sources (delays that depend on the ionosphere and troposphere conditions) can be greatly mitigated by differential systems external to the receiver's operation, the multipath effect is location-dependant and remains as the most important cause of accuracy degradation in time delay estimation, and consequently in position estimation, becoming a signal processing challenge. Traditional approaches to time delay estimation are often embodied in a communication systems framework. Indeed, ...

Fernandez-Prades, Carles — Universitat Politecnica de Catalunya


Reduced-Complexity Code Synchronization in Multipath Channels for BOC Modulated CDMA Signals with Applications in Galileo and Modernized GPS Systems

Applications for the new generations of Global Navigation Satellite Systems (GNSS) are developing rapidly and attract a great interest. Both US Global Positioning System (GPS) and European Galileo signals use Direct Sequence-Code Division Multiple Access (DS-CDMA) technology, where code and frequency synchronization are important stages at the receiver. The GNSS receivers estimate jointly the code phase and the Doppler spread through a two-dimensional searching process in time-frequency plane. Since both GPS and Galileo systems will send several signals on the same carriers, a new modulation type - the Binary Offset Carrier (BOC) modulation, has been selected. The main target of this modulation is to provide a better spectral separation with the existing BPSK-modulated GPS signals, while allowing optimal usage of the available bandwidth for different GNSS signals. The BOC modulation family includes several BOC variants, such as sine BOC (SinBOC), ...

Burian, Adina — Universitat Trier


Impairments in coordinated cellular networks: analysis, impact on performance and mitigation

Base station cooperation is recognized as a key technology for future wireless cellular communication networks. Considering antennas of distributed base stations and those of multiple terminals within those cells as a distributed multiple-input multiple-output (MIMO) system, this technique has the potential to eliminate inter-cell interference by joint signal processing and to enhance spectral efficiency in this way. Although the theoretical gains are meanwhile well-understood, it still remains challenging to realize the full potential of such cooperative schemes in real-world systems. Among other factors, such as the limited overhead for pilot symbols and for the feedback and backhaul, these performance limitations are related to channel and synchronization impairments, such as channel estimation, feedback quantization and channel aging, as well as imperfect carrier and sampling synchronization among the base stations. Because of these impairments, joint data precoding results to be mismatched with ...

Manolakis, Konstantinos — Technische Universität Berlin


Bayesian Signal Processing Techniques for GNSS Receivers: from multipath mitigation to positioning

This dissertation deals with the design of satellite-based navigation receivers. The term Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the american GPS is probably the most popular, the european contribution (Galileo) will be operative soon. Other global and regional systems exist, all with the same objective: aid user's positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation signals structure and receiver architecture. The design of a GNSS receiver consists of a number of functional blocks. From the antenna to the fi nal position calculation, the design poses challenges in many research areas. Although the Radio Frequency chain of the receiver is commented in the thesis, the main objective of the dissertation is on the signal processing algorithms applied after signal digitation. These ...

Closas, Pau — Universitat Politecnica de Catalunya


GNSS Array-based Acquisition: Theory and Implementation

This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. GNSS ranging signals are received with very low signal-to-noise ratio. Despite that the GNSS CDMA modulation offers limited protection against Radio Frequency Interferences (RFI), an interference that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service. A growing concern of this problem has appeared in recent times. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in the presence of wideband interferences. Antenna arrays receivers can benefit from spatial-domain processing, and thus mitigate the effects of interfering signals. ...

Arribas, Javier — Universitat Politecnica de Catalunya


Cyclostationary Blind Equalisation in Mobile Communications

Blind channel identication and equalisation are the processes by which a channel impulse response can be identified and proper equaliser filter coeffcients can be obtained, without knowledge of the transmitted signal. Techniques that exploit cyclostationarity can reveal information about systems which are nonminimum phase, nonminimum phase channels cannot be identied using only second-order statistics (SOS), because these do not contain the necessary phase information. Cyclostationary blind equalisation methods exploit the fact that, sampling the received signal at a rate higher than the transmitted signal symbol rate, the received signal becomes cyclostationary. In general, cyclostationary blind equalisers can identify a channel with less data than higher-order statistics (HOS) methods, and unlike these, noconstraint is imposed on the probability distribution function of the input signal. Nevertheless, cyclostationary methods suffer from some drawbacks, such as the fact that some channels are unidentiable when ...

Altuna, Jon — University Of Edinburgh


Antenna Arrays for Multipath and Interference Mitigation in GNSS Receivers

This thesis deals with the synchronization of one or several replicas of a known signal received in a scenario with multipath propagation and directional interference. A connecting theme along this work is the systematic application of the maximum likelihood (ML) principle together with a signal model in which the spatial signatures are unstructured and the noise term is Gaussian- distributed with an unknown correlation matrix. This last assumption is key in obtaining estimators that are capable of mitigating the disturbing signals that exhibit a certain structure, and this is achieved without resorting to the estimation of the parameters of those signals. On the other hand, the assumption of unstructured spatial signatures is interesting from a practical standpoint and facilitates the estimation problem since the estimates of these signatures can be obtained in closed form. This constitutes a first step towards ...

Seco-Granados, Gonzalo — Universitat Politecnica de Catalunya


Robust Signal Processing with Applications to Positioning and Imaging

This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...

Li, Haoqing — Northeastern University


Some Parametric Methods of Speech Processing

Parametric modelling of speech signals finds its use in various speech processing applications. Recently, publications concerning sinusoidal speech modelling have been increasingly appeared in scientific literature. The thesis is mainly devoted to the sinusoidal model with harmonically related component sine waves, i.e. the harmonic model. The main objective is to find new approaches to synthetic speech quality improvement. A novel method for speech spectrum envelope determination is introduced. This method uses a staircase envelope considering the spectral behaviour in voiced as well as unvoiced speech frames. The staircase envelope is smoothed by weighted moving average. The determined envelope is parametrized using autoregressive (AR) model or cepstral coefficients. It has been shown that the new method is of most importance in high-pitch speakers. Besides, new methods or modifications of known methods can be found in pitch synchronization, AR model order selection ...

Pribilova, Anna — Slovak University of Technology


Analysis of Multipath Mitigation Techniques for Satellite-based Positioning Applications

Multipath remains a dominant source of ranging errors in any Global Navigation Satellite System (GNSS), such as the Global Positioning System (GPS) or the developing European satellite navigation system Galileo. Multipath is undesirable in the context of GNSS, since the reception of multipath can create significant distortion to the shape of the correlation function used in the time delay estimate of a Delay Locked Loop (DLL) of a navigation receiver, leading to an error in the receiver's position estimate. Therefore, in order to mitigate the impact of multipath on a navigation receiver, the multipath problem has been approached from several directions, including the development of novel signal processing techniques. Many of these techniques rely on modifying the tracking loop discriminator (i.e., the DLL and its enhanced variants) in order to make it resistant to multipath, but their performance in severe ...

Bhuiyan, Mohammad Zahidul Hasan — Tampere University of Technology


GNSS Signal Processing and Spatial Diversity Exploitation

Global Navigation Satellite Systems (GNSS) signals are broadly used for positioning, navigation and timing (PNT) in many different applications and use cases. Although different PNT technologies are available, GNSS is expected to be a key player in the derivation of positioning and timing for many future applications, including those in the context of the Internet of Things (IoT) or autonomous vehicles, since it has the important advantage of being open access and worldwide available. Indeed, GNSS is performing very well in mild propagation conditions, achieving position and time synchronization accuracies down to the cm and ns levels, respectively. Nevertheless, the exploitation of GNSS in harsh propagation conditions typical of urban and indoor scenarios is very challenging, resulting in position errors of up to tens or even hundreds of meters, and timing accuracies of hundreds of ns. This thesis deals with ...

Garcia Molina, Jose Antonio — UPC


Efficient Communication over Wireless Channels: New Results in Equalization, Diversity and Interference Alignment

When data is transmitted over the wireless communication channel, the transmit signal experiences distortion depending on the channel¢s fading characteristics. On the one hand, this calls for efficient processing at the receiver to mitigate the detrimental effects of the channel and maximize data throughput. On the other hand, the diversity inherently present in these channels can be leveraged with appropriate transmit processing in order to increase the reliability of the transmission link. Recently, in [1] it was shown that the channel characteristics can be exploited to maximize the total data throughput in the interference channel where multiple user pairs rely on the same resource to communicate among themselves. In this PhD dissertation, we first propose novel equalizer designs for frequency selective channels. We then present new results on the diversity gain of equalizers in fading channels when appropriate precoding is ...

Shenoy, Shakti Prasad — EURECOM/Mobile Communications


Galileo Broadcast Ephemeris and Clock Errors, and Observed Fault Probabilities for ARAIM

The characterization of Clock and Ephemeris error of the Global Navigation Satellite Systems is a key element to validate the assumptions for the integrity analysis of GNSS Safety of Life (SoL) applications. Specifically, the performance metrics of SoL applications require the characterization of the nominal User Range Errors (UREs) as well as the knowledge of the probability of a satellite, Psat or a constellation fault, Pconst, i.e. when one or more satellites are not in the nominal mode. We will focus on Advanced Autonomous Integrity Monitoring (ARAIM). The present dissertation carries-out an end-to-end characterization and analysis of Galileo and GPS satellites for ARAIM. It involves two main targets. First, the characterization of Galileo and GPS broadcast ephemeris and clock errors, to determine the fault probabilities Psat and Pconst, and the determination on an upper bound of the nominal satellite ranging ...

Alonso Alonso, María Teresa — Universitat politecnica de Catalunya, Barcelona Tech

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.