Statistical signal processing of spectrometric data: study of the pileup correction for energy spectra applied to Gamma spectrometry

The main objective of $\gamma$ spectrometry is to characterize the radioactive elements of an unknown source by studying the energy of the emitted $\gamma$ photons. When a photon interacts with a detector, its photonic energy is converted into an electrical pulse, whose integral energy is measured. The histogram obtained by collecting the energies can be used to identify radionucleides and measure their activity. However, at high counting rates, perturbations which are due to the stochastic aspect of the temporal signal can cripple the identification of the radioactive elements. More specifically, since the detector has a finite resolution, close arrival times of photons which can be modeled as an homogeneous Poisson process cause pileups of individual pulses. This phenomenon distorts energy spectra by introducing multiple fake spikes and prolonging artificially the Compton continuum, which can mask spikes of low intensity. The ...

Trigano, Thomas — Télécom Paris Tech


Direction of Arrival Estimation and Localization Exploiting Sparse and One-Bit Sampling

Data acquisition is a necessary first step in digital signal processing applications such as radar, wireless communications and array processing. Traditionally, this process is performed by uniformly sampling signals at a frequency above the Nyquist rate and converting the resulting samples into digital numeric values through high-resolution amplitude quantization. While the traditional approach to data acquisition is straightforward and extremely well-proven, it may be either impractical or impossible in many modern applications due to the existing fundamental trade-off between sampling rate, amplitude quantization precision, implementation costs, and usage of physical resources, e.g. bandwidth and power consumption. Motivated by this fact, system designers have recently proposed exploiting sparse and few-bit quantized sampling instead of the traditional way of data acquisition in order to reduce implementation costs and usage of physical resources in such applications. However, before transition from the tradition data ...

Saeid Sedighi — University of Luxembourg


Local Prior Knowledge in Tomography

Computed tomography (CT) is a technique that uses computation to form an image of the inside of an object or person, by combining projections of that object or person. The word tomography is derived from the Greek word tomos, meaning slice. The basis for computed tomography was laid in 1917 by Johann Radon, an Austrian mathematician. Computed tomography has a broad range of applications, the best known being medical imaging (the CT scanner), where X-rays are used for making the projection images. The rst practical application of CT was, however, in astronomy, by Ronald Bracewell in 1956. He used CT to improve the resolution of radio-astronomical observations. The practical applications in this thesis are from electron tomography, where the images are made with an electron microscope, and from preclinical research, where the images are made with a CT scanner. There ...

Roelandts, Tom — University of Antwerp


Super-Resolution Image Reconstruction Using Non-Linear Filtering Techniques

Super-resolution (SR) is a filtering technique that combines a sequence of under-sampled and degraded low-resolution images to produce an image at a higher resolution. The reconstruction takes advantage of the additional spatio-temporal data available in the sequence of images portraying the same scene. The fundamental problem addressed in super-resolution is a typical example of an inverse problem, wherein multiple low-resolution (LR)images are used to solve for the original high-resolution (HR) image. Super-resolution has already proved useful in many practical cases where multiple frames of the same scene can be obtained, including medical applications, satellite imaging and astronomical observatories. The application of super resolution filtering in consumer cameras and mobile devices shall be possible in the future, especially that the computational and memory resources in these devices are increasing all the time. For that goal, several research problems need to be ...

Trimeche, Mejdi — Tampere University of Technology


Adaptive Nonlocal Signal Restoration and Enhancement Techniques for High-Dimensional Data

The large number of practical applications involving digital images has motivated a significant interest towards restoration solutions that improve the visual quality of the data under the presence of various acquisition and compression artifacts. Digital images are the results of an acquisition process based on the measurement of a physical quantity of interest incident upon an imaging sensor over a specified period of time. The quantity of interest depends on the targeted imaging application. Common imaging sensors measure the number of photons impinging over a dense grid of photodetectors in order to produce an image similar to what is perceived by the human visual system. Different applications focus on the part of the electromagnetic spectrum not visible by the human visual system, and thus require different sensing technologies to form the image. In all cases, even with the advance of ...

Maggioni, Matteo — Tampere University of Technology


Inverse Scattering Procedures for the Reconstruction of One-Dimensional Permittivity Range Profiles

Inverse scattering is relevant to a very large class of problems, where the unknown structure of a scattering object is estimated by measuring the scattered field produced by known probing waves. Therefore, for more than three decades, the promises of non-invasive imaging inspection by electromagnetic probing radiations have been justifying a research interest on these techniques. Several application areas are involved, such as civil and industrial engineering, non-destructive testing and medical imaging as well as subsurface inspection for oil exploration or unexploded devices. In spite of this relevance, most scattering tomography techniques are not reliable enough to solve practical problems. Indeed, the nonlinear relationship between the scattered field and the object function and the robustness of the inversion algorithms are still open issues. In particular, microwave tomography presents a number of specific difficulties that make it much more involved to ...

Genovesi, Simone — University of Pisa


Development of a Framework to Enhance BVOC Imaging

Air pollution remains a major global challenge, particularly in urban areas where high pollutant concentrations negatively impact public health and contribute to climate change. Among the various pollutants, biogenic volatile organic compounds (BVOCs) play a critical role in atmospheric chemistry, influencing the formation of secondary organic aerosols and ground-level ozone, affecting air quality and climate dynamics. Accurately estimating BVOC emissions at high spatial resolution is challenging due to the limitations of satellite observations and computational models. Additionally, forecasting nitrogen dioxide (NO2) concentrations in urban environments is vital for effective air quality management, yet existing models often struggle to capture complex spatiotemporal dependencies. The thesis aims to address these challenges by proposing novel deep learning (DL) frameworks to tackle two key tasks: (i) improving the spatial resolution of BVOC emission maps through super-resolution (SR) techniques and (ii) developing a robust model ...

Giganti, Antonio — Politecnico di Milano


Approche inverse pour la reconstruction des environnements circumstellaires en polarimétrie avec l’instrument d’imagerie directe ESO/VLT SPHERE IRDIS.

Circumstellars environments observation is a key for the comprehension of planet formation. If the very large telescopes allow the resolution of these environments, their observation is difficult due to the high contrast between the environment and their host stars. In fact the host stars are 1000 to 10 000 times brighter than the environment, even 10 000 000 times brighter for exoplanets. When images of these circumstellar environnements are acquired in direct imaging, the signal of the environnements mixed to star light residuals. Yet, the light of the environment is partially linearly polarized while the light od the star is unpolarized. The instrument Infrared Dual-band Imaging and Spectroscopy (IRDIS) of the European Southern Observatory’s (ESO) Spectro-Polarimeter High-contrast Expolanet REsearch (SPHERE) instrument, installed at one of the four Very Large Telescopes (VLT) in Atacama in Chile, acquires datasets where the polarization ...

[Denneulin], [Laurence] — Université Claud Bernard Lyon 1


Bayesian resolution of the non linear inverse problem of Electrical Impedance Tomography with Finite Element modeling

Resistivity distribution estimation, widely known as Electrical Impedance Tomography (EIT), is a non linear ill-posed inverse problem. However, the partial derivative equation ruling this experiment yields no analytical solution for arbitrary conductivity distribution. Thus, solving the forward problem requires an approximation. The Finite Element Method (FEM) provides us with a computationally cheap forward model which preserves the non linear image-data relation and also reveals sufficiently accurate for the inversion. Within the Bayesian approach, Markovian priors on the log-conductivity distribution are introduced for regularization. The neighborhood system is directly derived from the FEM triangular mesh structure. We first propose a maximum a posteriori (MAP) estimation with a Huber-Markov prior which favours smooth distributions while preserving locally discontinuous features. The resulting criterion is minimized with the pseudo-conjugate gradient method. Simulation results reveal significant improvements in terms of robustness to noise, computation rapidity ...

Martin, Thierry — Laboratoire des signaux et systèmes


Three dimensional shape modeling: segmentation, reconstruction and registration

Accounting for uncertainty in three-dimensional (3D) shapes is important in a large number of scientific and engineering areas, such as biometrics, biomedical imaging, and data mining. It is well known that 3D polar shaped objects can be represented by Fourier descriptors such as spherical harmonics and double Fourier series. However, the statistics of these spectral shape models have not been widely explored. This thesis studies several areas involved in 3D shape modeling, including random field models for statistical shape modeling, optimal shape filtering, parametric active contours for object segmentation and surface reconstruction. It also investigates multi-modal image registration with respect to tumor activity quantification. Spherical harmonic expansions over the unit sphere not only provide a low dimensional polarimetric parameterization of stochastic shape, but also correspond to the Karhunen-Lo´eve (K-L) expansion of any isotropic random field on the unit sphere. Spherical ...

Li, Jia — University of Michigan


FMCW Radar Systems for Automotive and Biomedical Applications

Frequency Modulated Continuous Wave (FMCW) radar has emerged as a powerful sensing modality in both automotive and biomedical applications due to its ability to provide precise range, velocity, and Doppler measurements. This dissertation investigates novel methodologies to enhance FMCW radar's effectiveness in two critical domains: (1) forward-looking Synthetic Aperture Radar (SAR) imaging for automotive applications, and (2) biomedical monitoring for non-contact vital sign estimation and dehydration assessment. The proposed approaches leverage advanced signal processing, deep learning, and MIMO radar techniques to improve spatial resolution, classification accuracy, and robustness in real-world scenarios. In the automotive domain, the research focuses on improving the azimuthal resolution of forward-looking SAR imaging by incorporating MIMO radar and deep learning-based reconstruction methods. Two key methodologies are proposed to address the resolution limitations of conventional SAR imaging techniques. The first approach employs an unsupervised Deep Basis Pursuit ...

Vijith Varma Kotte — King Abdullah University of Science and Technology


Radial Basis Function Network Robust Learning Algorithms in Computer Vision Applications

This thesis introduces new learning algorithms for Radial Basis Function (RBF) networks. RBF networks is a feed-forward two-layer neural network used for functional approximation or pattern classification applications. The proposed training algorithms are based on robust statistics. Their theoretical performance has been assessed and compared with that of classical algorithms for training RBF networks. The applications of RBF networks described in this thesis consist of simultaneously modeling moving object segmentation and optical flow estimation in image sequences and 3-D image modeling and segmentation. A Bayesian classifier model is used for the representation of the image sequence and 3-D images. This employs an energy based description of the probability functions involved. The energy functions are represented by RBF networks whose inputs are various features drawn from the images and whose outputs are objects. The hidden units embed kernel functions. Each kernel ...

Bors, Adrian G. — Aristotle University of Thessaloniki


FMCW Radar Applications for Automotive and Biomedical Applications

Frequency Modulated Continuous Wave (FMCW) radar has emerged as a powerful sensing modality in both automotive and biomedical applications due to its ability to provide precise range, velocity, and Doppler measurements. This dissertation investigates novel methodologies to enhance FMCW radar's effectiveness in two critical domains: (1) forward-looking Synthetic Aperture Radar (SAR) imaging for automotive applications, and (2) biomedical monitoring for non-contact vital sign estimation and dehydration assessment. The proposed approaches leverage advanced signal processing, deep learning, and MIMO radar techniques to improve spatial resolution, classification accuracy, and robustness in real-world scenarios. In the automotive domain, the research focuses on improving the azimuthal resolution of forward-looking SAR imaging by incorporating MIMO radar and deep learning-based reconstruction methods. Two key methodologies are proposed to address the resolution limitations of conventional SAR imaging techniques. The first approach employs an unsupervised Deep Basis Pursuit ...

Vijith Varma Kotte — King Abdullah University of Science and Technology


Exact Unbiased Inverse of the Anscombe Transformation and its Poisson-Gaussian Generalization

Digital image acquisition is an intricate process, which is subject to various errors. Some of these errors are signal-dependent, whereas others are signal-independent. In particular, photon emission and sensing are inherently random physical processes, which in turn substantially contribute to the randomness in the output of the imaging sensor. This signal-dependent noise can be approximated through a Poisson distribution. On the other hand, there are various signal-independent noise sources involved in the image capturing chain, arising from the physical properties and imperfections of the imaging hardware. The noise attributed to these sources is typically modelled collectively as additive white Gaussian noise. Hence, we have three common ways of modelling the noise present in a digital image: Gaussian, Poisson, or Poisson-Gaussian. Image denoising aims at removing or attenuating this noise from the captured image, in order to provide an estimate of ...

Mäkitalo, Markku — Tampere University of Technology


Array Signal Processing Algorithms for Beamforming and Direction Finding

Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptive array processing algorithms have been reported in the literature in the last several decades. These algorithms, in a general view, exhibit a trade-off between performance and required computational complexity. In this thesis, we focus on the development of array processing algorithms in the application of beamforming and direction of arrival (DOA) estimation. In the beamformer design, we employ the constrained minimum variance (CMV) and the constrained constant modulus (CCM) criteria to propose full-rank and reduced-rank adaptive algorithms. Specifically, for the full-rank algorithms, we present two low-complexity adaptive step size mechanisms with the CCM criterion for the step size adaptation of the ...

Lei Wang — University of York

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.