Measurement and Modelling of Internet Traffic over 2.5 and 3G Cellular Core Networks

THE task of modeling data traffic in networks is as old as the first commercial telephony systems. In the recent past in mobile telephone networks the focus has moved from voice to packetswitched services. The new cellular mobile networks of the third generation (UMTS) and the evolved second generation (GPRS) offer the subscriber the possibility of staying online everywhere and at any time. The design and dimensioning is well known for circuit switched voice systems, but not for mobile packet-switched systems. The terms user expectation, grade of service and so on need to be defined. To find these parameters it is important to have an accurate traffic model that delivers good traffic estimates. In this thesis we carried out measurements in a live 3G core network of an Austrian operator, in order to find appropriate models that can serve as ...

Svoboda, Philipp — Vienna University of Technology


On Hardware Implementation of Discrete-Time Cellular Neural Networks

Cellular Neural Networks are characterized by simplicity of operation. The network consists of a large number of nonlinear processing units; called cells; that are equally spread in the space. Each cell has a simple function (sequence of multiply-add followed by a single discrimination) that takes an element of a topographic map and then interacts with all cells within a specified sphere of interest through direct connections. Due to their intrinsic parallel computing power, CNNs have attracted the attention of a wide variety of scientists in, e.g., the fields of image and video processing, robotics and higher brain functions. Simplicity of operation together with the local connectivity gives CNNs first-hand advantages for tiled VLSI implementations with very high speed and complexity. The first VLSI implementation has been based on analogue technology but was small and suffered from parasitic capacitances and resistances ...

Malki, Suleyman — Lund University


Signal Processing for Multicell Multiuser MIMO Wireless Communication Systems

Multi-user multi-antenna wireless communication systems have become essential due to the widespread of smart applications and the use of the Internet. Ultra-dense deployment of small cell networks has been recognized as an effective way to meet the exponentially growing mobile data traffic and to accommodate increasingly diversified mobile applications for beyond 5G and future wireless networks. Small cells using low power nodes are meant to be deployed in hot spots, where the number of users varies strongly with time and between adjacent cells. As a result, small cells are expected to have burst-like traffic, which makes the static time division duplex (TDD) frame configuration strategy, where a common TDD pattern is selected for the whole network, not able to meet the users' requirements and the traffic fluctuations. Dynamic TDD (DTDD) technology which allows the cells to independently adapt their TDD ...

Nwalozie, Gerald Chetachi — Technische Universität Ilmenau


System Level Investigations for Mobile and Indoor Users in Future Cellular Networks

Operators of cellular networks are hard pressed to provide a seamless wireless connection to their users. Due to the expanded demand not only for coverage but also for increased network capacity, the network architecture needs to be adapted and evolve beyond the classical hexagonal grid. The globally ongoing trend of urbanization leads to more and more users utilizing their wireless devices indoors or in mobile scenarios, when commuting or traveling. These scenarios pose particular challenges to implementing a suitable network in terms of propagation conditions as well as optimal base station (BS) deployment. Therefore, in this thesis, I investigate the potential network-wide average performance of wireless cellular networks particularly in high speed train (HST) environments , as well as of network deployments indoors. An investigation on network scale requires to limit the complexity of the applied system models. This is ...

Martin Klaus Müller — TU Wien


System-Level Modeling and Optimization of MIMO HSDPA Networks

Interaction between the Medium Access Control (MAC)-layer and the physical-layer routines is one of the basic concepts of modern wireless networks. Physical-layer dependent resource allocation and scheduling guarantee efficient network utilization. Accordingly, classical link-level analyses, focusing only on the physical-layer are not sufficient anymore for optimum transceiver structure and algorithm development. This thesis presents the development and application of a system-level description suitable for the downlink of Multiple-Input Multiple-Output (MIMO) enhanced High-Speed Downlink Packet Access (HSDPA), with particular focus on the Double Transmit Antenna Array (D-TxAA) transmission mode. The system-level model allows for investigating and evaluating transmission systems and algorithms in the context of cellular networks. Two separate models are proposed to obtain a complete system-level description: (i) a link-quality model, analytically describing the MIMO HSDPA link quality in a so-called equivalent fading parameter structure, and (ii) a link-performance model, ...

Wrulich, Martin — Vienna University of Technology


System Level Modeling and Evaluation of Heterogeneous Cellular Networks

The cumulative impact of co-channel interferers, commonly referred to as aggregate network interference, is one of the main performance limiting factors in today’s mobile cellular networks. Thus, its careful statistical description is decisive for system analysis and design. A system model for interference analysis is required to capture essential network variation effects, such as base station deployment- and signal propagation characteristics. Furthermore it should be simple and tractable so as to enable first-order insights on design fundamentals and rapid exchange of new ideas. Interference modeling has posed a challenge ever since the establishment of traditional macro cellular deployments. The recent emergence of heterogeneous network topologies complicates matters by contesting many established aspects of time-honored approaches. This thesis presents user-centric system models that enable to investigate scenarios with an asymmetric interference impact. The first approach simplifies the interference analysis in a ...

Taranetz, Martin — Technische Universität Wien


Data-Driven Estimation of Spatiotemporal Performance Maps in Cellular Networks

For a large class of non-delay-critical applications (e.g., buffered video streaming or data transfer from cloud services to local devices), end-to-end throughput becomes the most crucial key performance indicator (KPI). In cellular networks, the achievable end-user throughput (the maximum throughput a user will get when attempting to download as much data as possible) is a spatiotemporal function, and its estimation poses a challenging and as-yet unsolved problem. The ability to accurately predict achievable throughput in a given location and time interval would, for example, allow mobile operators to further optimize their networks and design more personalized offers for the customers, or allow end-users with mobile broadband modems to make more informed decisions when selecting a provider. This work investigates the impact of individual parameters on the end-user achievable throughput in cellular networks and analyzes the feasibility and limitations of constructing ...

Vaclav Raida — TU Wien


Device-to-Device Wireless Communications

Device-to-Device (D2D) is one of the important proposed solutions to increase the capacity, offload the traffic, and improve the energy effciency in next generation cellular networks. D2D communication is known as a direct communication between two users without using cellular infrastructure networks. Despite of large expected bene fits in terms of capacity in D2D, the coexistence of D2D and cellular networks in the same spectrum creates new challenges in interference management and network design. To limit the interference power control schemes on cellular networks and D2D networks are typically adopted. Even though power control is introduced to limit the interference level, it does not prevent cellular and D2D users from experiencing coverage limitation when sharing the same radio resources. Therefore, the design of such networks requires the availability of suitable methods able to properly model the eff ect of interference ...

Alhalabi, Ashraf S.A. — Universita Degli Sudi di Bologna


Multiantenna Cellular Communications: Channel Estimation, Feedback, and Resource Allocation

The use of multiple antennas at base stations and user devices is a key component in the design of cellular communication systems that can meet the capacity demands of tomorrow. The downlink transmission from base stations to users is particularly limiting, both from a theoretical and a practical perspective, since user devices should be simple and power-efficient, and because many applications primarily create downlink traffic (e.g., video streaming). The potential gain of employing multiple antennas for downlink transmission is well recognized: the total data throughput increases linearly with the number of transmit antennas if the spatial dimension is exploited for simultaneous transmission to multiple users. In the design of practical cellular systems, the actual benefit of multiuser multiantenna transmission is limited by a variety of factors, including acquisition and accuracy of channel information, transmit power, channel conditions, cell density, user ...

Emil Björnson — KTH Royal Institute of Technology


Impairments in coordinated cellular networks: analysis, impact on performance and mitigation

Base station cooperation is recognized as a key technology for future wireless cellular communication networks. Considering antennas of distributed base stations and those of multiple terminals within those cells as a distributed multiple-input multiple-output (MIMO) system, this technique has the potential to eliminate inter-cell interference by joint signal processing and to enhance spectral efficiency in this way. Although the theoretical gains are meanwhile well-understood, it still remains challenging to realize the full potential of such cooperative schemes in real-world systems. Among other factors, such as the limited overhead for pilot symbols and for the feedback and backhaul, these performance limitations are related to channel and synchronization impairments, such as channel estimation, feedback quantization and channel aging, as well as imperfect carrier and sampling synchronization among the base stations. Because of these impairments, joint data precoding results to be mismatched with ...

Manolakis, Konstantinos — Technische Universität Berlin


Advanced Signal Processing Concepts for Multi-Dimensional Communication Systems

The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfill other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with ...

Cheema, Sher Ali — Technische Universität Ilmenau


Robust and multiresolution video delivery : From H.26x to Matching pursuit based technologies

With the joint development of networking and digital coding technologies multimedia and more particularly video services are clearly becoming one of the major consumers of the new information networks. The rapid growth of the Internet and computer industry however results in a very heterogeneous infrastructure commonly overloaded. Video service providers have nevertheless to oer to their clients the best possible quality according to their respective capabilities and communication channel status. The Quality of Service is not only inuenced by the compression artifacts, but also by unavoidable packet losses. Hence, the packet video stream has clearly to fulll possibly contradictory requirements, that are coding eciency and robustness to data loss. The rst contribution of this thesis is the complete modeling of the video Quality of Service (QoS) in standard and more particularly MPEG-2 applications. The performance of Forward Error Control (FEC) ...

Frossard, Pascal — Swiss Federal Institute of Technology


Optimization of Video Streaming over 3G Networks

VIDEO streaming over cellular networks has been made possible in the last years by better performing video codecs and wireless cellular networks oriented to data transmission. The interaction between two heterogeneous worlds, the telecommunication infrastructure and the coding video software, calls for advanced optimization mechanisms. The actors involved in the optimization process are the cellular system's access network, UMTS and HSDPA, the wireless transmission channel and the fi nal user equipped with a mobile device capable of decoding video sequences. The knowledge and characterization of each of the building blocks allow the optimization of each element to the specifi c needs of the others. This doctoral thesis discusses three main contributions. In the fi rst part, the e ffects of transmission errors on video streams are analyzed. Incorrectly received video packets are usually discarded by the lower layers and not ...

Superiori, Luca — Vienna University of Technology


Error Resilient Transmission of Video Streaming over Wireless Mobile Networks,

The third generation of mobile systems brought higher data rates that allow for provisioning of multimedia services containing also video. The real-time services like video call, conferencing, and streaming are particularly challenging for mobile communication systems due to the wireless channel quality variations. The mechanism for video compression utilizes a hybrid of temporal and spatial prediction, transform coding and variable length coding. The combination of these methods provides high compression gain, but at the same time makes the encoded stream more prone to errors. In this thesis, techniques for error resilient transmission of video streaming over wireless mobile networks are investigated. Focus is given to the recent H.264/AVC standard, although the ma jority of the proposed method apply to other video coding standards, too. The first part is dedicated to exploiting the residual redundancy of the received video stream at ...

Nemethova, O. — Vienna University of Technology


Voice biometric system security: Design and analysis of countermeasures for replay attacks

Voice biometric systems use automatic speaker verification (ASV) technology for user authentication. Even if it is among the most convenient means of biometric authentication, the robustness and security of ASV in the face of spoofing attacks (or presentation attacks) is of growing concern and is now well acknowledged by the research community. A spoofing attack involves illegitimate access to personal data of a targeted user. Replay is among the simplest attacks to mount - yet difficult to detect reliably and is the focus of this thesis. This research focuses on the analysis and design of existing and novel countermeasures for replay attack detection in ASV, organised in two major parts. The first part of the thesis investigates existing methods for spoofing detection from several perspectives. I first study the generalisability of hand-crafted features for replay detection that show promising results ...

Bhusan Chettri — Queen Mary University of London

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.