Transmission over Time- and Frequency-Selective Mobile Wireless Channels

The wireless communication industry has experienced rapid growth in recent years, and digital cellular systems are currently designed to provide high data rates at high terminal speeds. High data rates give rise to intersymbol interference (ISI) due to so-called multipath fading. Such an ISI channel is called frequency selective. On the other hand, due to terminal mobility and/or receiver frequency offset the received signal is subject to frequency shifts (Doppler shifts). Doppler shift induces time-selectivity characteristics. The Doppler effect in conjunction with ISI gives rise to a so-called doubly selective channel (frequency- and time-selective). In addition to the channel effects, the analog front-end may suffer from an imbalance between the I and Q branch amplitudes and phases as well as from carrier frequency offset. These analog front-end imperfections then result in an additional and significant degradation in system performance, especially ...

Barhumi, Imad — Katholieke Universiteit Leuven


OFDM Multi-User Communication Over Time-Variant Channels

Wireless broadband communications for users moving at vehicular speed is a cor- nerstone of future fourth generation (4G) mobile communication systems. We inves- tigate a multi-carrier (MC) code division multiple access (CDMA) system which is based on orthogonal frequency division multiplexing (OFDM). A spreading sequence is used in the frequency domain in order to distinguish individual users and to take advantage of the multipath diversity of the wireless channel. The transmission is block oriented. A block consists of OFDM pilot and OFDM data symbols. At pedestrian velocities the channel can be modelled as block fading. We ap- ply iterative multi-user detection and channel estimation. In iterative receivers soft symbols are derived from the output of an soft-input soft-output decoder. These soft symbols are used in order to reduce the interference from other users and to enhance the channel estimates. We ...

Zemen, T. — Vienna University of Technology


Efficient Communication over Wireless Channels: New Results in Equalization, Diversity and Interference Alignment

When data is transmitted over the wireless communication channel, the transmit signal experiences distortion depending on the channel¢s fading characteristics. On the one hand, this calls for efficient processing at the receiver to mitigate the detrimental effects of the channel and maximize data throughput. On the other hand, the diversity inherently present in these channels can be leveraged with appropriate transmit processing in order to increase the reliability of the transmission link. Recently, in [1] it was shown that the channel characteristics can be exploited to maximize the total data throughput in the interference channel where multiple user pairs rely on the same resource to communicate among themselves. In this PhD dissertation, we first propose novel equalizer designs for frequency selective channels. We then present new results on the diversity gain of equalizers in fading channels when appropriate precoding is ...

Shenoy, Shakti Prasad — EURECOM/Mobile Communications


Fast Blind Adaptive Equalisation for Multiuser CDMA Systems

In order to improve communication over a dispersive channel in a CDMA system, we have to re-establish the orthogonally of codes which are used when combining input signals from many users onto a single communication path, as otherwise the performance of such system is limited significantly by inter-symbol interference (ISI) and multiuser access interference (MAI). In order to achieve this, adaptive filters are employed. A variety of adaptive schemes to remove ISI and MAI have been reported in the literature, some of which rely on training sequences, such as the Least Mean Squares (LMS) and Recursive Least Squares (RLS) algorithms, or on blind adaptation, such as the Constant Modulus Algorithm (CMA) or the Decision Directed algorithm (DD), which has similar convergence properties as the LMS in the absence of decision errors, the CMA is relatively slow compared to the DD ...

Daas, Adel — University of Strathclyde


Study and optimization of multi-antenna systems associated with multicarrier modulations

Since several years, multi-antenna systems are foreseen as a potential solution for increasing the throughput of future wireless communication systems. The aim of this thesis is to study and to improve the transmitter and receiver's techniques of these MIMO (Multiple Input Multiple Output) systems in the context of a multi-carrier transmission. On the one hand, the OFDM (Orthogonal Frequency Division Multiplex) modulation, which transform a frequency selective channel into multiple non frequency selective channels, is particularly well adapted to the conception of MIMO receivers with low complexity. On the other hand, two techniques allowing to improve the exploitation of frequential and/or temporal diversities are associated with OFDM, namely linear precoding (LP-OFDM) and CDMA in a MC-CDMA (Multicarrier Code division Multiplex Access) scheme. We have associated LP-OFDM and MC-CDMA with two MIMO techniques which require no channel state information at the ...

LE NIR, Vincent — INSA de Rennes


Filter Bank Multicarrier Modulation for Future Wireless Systems

Future wireless systems will be characterized by a large range of possible use cases. This requires a flexible allocation of the available time-frequency resources, which is difficult in conventional Orthogonal Frequency Division Multiplexing (OFDM). Thus, modifications of OFDM, such as windowing or filtering, become necessary. Alternatively, one can employ a different modulation scheme, such as Filter Bank Multicarrier Modulation (FBMC). In this thesis, I provide a unifying framework, discussion and performance evaluation of FBMC and compare it to OFDM based schemes. My investigations are not only based on simulations, but are substantiated by real-world testbed measurements and trials, where I show that multiple antennas and channel estimation, two of the main challenges associated with FBMC, can be efficiently dealt with. Additionally, I derive closed-form solutions for the signal-to-interference ratio in doubly-selective channels and show that in many practical cases, one-tap ...

Nissel, Ronald — TU Wien


Pilot Pattern Optimization for Doubly-Selective MIMO OFDM Transmissions

Current wireless transmission systems are far from their theoretically achievable performance bounds. The main reason behind this is a conservative approach of the standardization organizations. Most current standards for wireless communication employ Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency-Division Multiplexing (OFDM) modulation as it offers a high spectral effciency. These systems require the insertion of at the receiver known symbols in order to estimate the transmission channel. These so-called pilot-symbols consume available resources such as power and bandwidth, and therefore eff ectively decrease spectral effciency. This thesis deals with pilot pattern optimization for MIMO OFDM transmission systems. First, an optimal power distribution among pilot- and data-symbols is considered. The post-equalization Signal to Interference and Noise Ratio (SINR) is maximized in order to deliver optimal performance. The optimal power o set between the pilot- and data-symbols depends on the ratio between the number ...

Šimko, Michal — Vienna University of Technology


Block Transmission Techniques for Wireless Communications

In order to meet the market demand for high datarates, most digital wireless communication systems rely on broadband channels and therefore suffer from Inter Symbol Interference (ISI), a phenomenon that needs to be combatted at the receiver by appropriate equalization techniques in order to restore the transmitted information. In this context, block transmission techniques based on the use of a Cyclic-Prefix (CP) have attracted a lot of attention in the last years for they allow an efficient and computationally cheap ISI cancellation procedure. Historically, OFDM (Orthogonal Frequency Division Multiplexing) was the first proposed block transmission scheme and has been adopted in numerous standards for high-speed data transmission in both wired and wireless applications. In the wireless context however, OFDM suffers of several problems, both on an implementational point of view and from a performance perspective. Some recently proposed block transmission ...

Rousseaux, Olivier — Katholieke Universiteit Leuven


Reduced-Complexity Adaptive Filtering Techniques for Communications Applications

Adaptive filtering algorithms are powerful signal processing tools with widespread use in numerous engineering applications. Computational complexity is a key factor in determining the optimal implementation as well as real-time performance of the adaptive signal processors. To minimize the required hardware and/or software resources for implementing an adaptive filtering algorithm, it is desirable to mitigate its computational complexity as much as possible without imposing any significant sacrifice of performance. This thesis comprises a collection of thirteen peer-reviewed published works as well as an integrating material. The works are along the lines of a common unifying theme that is to devise new low-complexity adaptive filtering algorithms for communications and, more generally, signal processing applications. The main contributions are the new adaptive filtering algorithms, channel equalization techniques, and theoretical analyses listed below under four categories: 1) adaptive system identification • affine projection ...

Arablouei, Reza — University of South Australia


OFDM Air-Interface Design for Multimedia Communications

The aim of this dissertation is the investigation of the key issues encountered in the development of wideband radio air-interfaces. Orthogonal frequency-division multiplexing (OFDM) is considered as the enabling technology for transmitting data at extremely high rates over time-dispersive radio channels. OFDM is a transmission scheme, which splits up the data stream, sending the data symbols simultaneously at a drastically reduced symbol rate over a set of parallel sub-carriers. The first part of this thesis deals with the modeling of the time-dispersive and frequency-selective radio channel, utilizing second order Gaussian stochastic processes. A novel channel measurement technique is developed, in which the RMS delay spread of the channel is estimated from the level-crossing rate of the frequency-selective channel transfer function. This method enables the empirical channel characterization utilizing simplified non-coherent measurements of the received power versus frequency. Air-interface and multiple ...

Witrisal, Klaus — Delft University of Technology


Diversity Gain Enhancement for Extended Orthogonal Space-Time Block Coding in Wireless Communications

Transmit diversity is a powerful technique for enhancing the channel capacity and reliability of multiple-input and multiple-output (MIMO) wireless systems. This thesis considers extended orthogonal space-time block coding (EO-STBC) with beamsteering angles, which have previously been shown to potentially achieve full diversity and array gain with four transmit and one receive antenna. The optimum setting of beamsteering angles applied in the transmitter, which has to be calculated based on channel state information (CSI) at the receiver side, must be quantised and feed back to the transmitter via a reverse feedback link. When operating in a fading scenario, channel coefficients vary smoothly with time. This smooth evolution of channel coefficients motivates the investigation of differential feedback, which can reduce the number of feedback bits, while potentially maintaining near optimum performance. The hypothesis that the smooth evolution of channel coefficients translates into ...

Hussin, Mohamed Nuri Ahmed — University of Strathclyde


Signal Processing for Ultra Wideband Transceivers

In this thesis novel implementation approaches for standardized and non-standardized ultra wide-band (UWB) systems are presented. These implementation approaches include signal processing algorithms to achieve processing of UWB signals in transceiver front-ends and in digital back-ends. A parallelization of the transceiver in the frequency-domain has been achieved with hybrid filterbank transceivers. The standardized MB-OFDM signaling scheme allows par- allelization in the frequency domain by distributing the orthogonal multicarrier modulation onto multiple units. Furthermore, the channel’s response to wideband signals has been parallelized in the frequency domain and the effects of the parallelization have been investi- gated. Slight performance decreases are observed, where the limiting effects are truncated sidelobes and filter mismatches in analog front-ends. Measures for the performance loss have been defined. For UWB signal generation, a novel broadband signal generation approach is presented. For that purpose, multiple digital-to-analog converters ...

Krall, Christoph — Graz University of Technology


Advanced Transceiver Design for Continuous Phase Modulation

This dissertation proposes advanced transceiver designs applying turbo and space-time (ST) concepts to continuous phase modulation (CPM), which is preferred in numerous power- and band-limited communication systems for its constant envelope and spectral efficiency. Despite its highly attractive spectral properties, maximum-likelihood detection of CPM over the frequency-selective multipath fading channels can bring impractical complexity issues because of the intensive search over a single super trellis which combines the effects of the modulation and the multipath channel. Application of the reduced-state trellis search algorithms results in lower complexity but the computational load could still be prohibitively large to obtain high performance in long channel impulse responses. In the dissertation, instead of employing trellis-based combined detection methods, equalization and demodulation functions are separated and novel low-complexity receivers with soft-input soft-output (SISO) time-domain and frequency-domain linear equalizers are proposed for bit-interleaved coded CPM, ...

Ozgul, Baris — Bogazici University


Adaptive interference suppression algorithms for DS-UWB systems

In multiuser ultra-wideband (UWB) systems, a large number of multipath components (MPCs) are introduced by the channel. One of the main challenges for the receiver is to effectively suppress the interference with affordable complexity. In this thesis, we focus on the linear adaptive interference suppression algorithms for the direct-sequence ultrawideband (DS-UWB) systems in both time-domain and frequency-domain. In the time-domain, symbol by symbol transmission multiuser DS-UWB systems are considered. We first investigate a generic reduced-rank scheme based on the concept of joint and iterative optimization (JIO) that jointly optimizes a projection vector and a reduced-rank filter by using the minimum mean-squared error (MMSE) criterion. A low-complexity scheme, named Switched Approximations of Adaptive Basis Functions (SAABF), is proposed as a modification of the generic scheme, in which the complexity reduction is achieved by using a multi-branch framework to simplify the structure ...

Sheng Li — University of York


Statistical Physics Approach to Design and Analysis of Multiuser Systems Under Channel Uncertainty

Code-division multiple-access (CDMA) systems with random spreading and channel uncertainty at the receiver are studied. Frequency selective single antenna, as well as, narrowband multiple antenna channels are considered. Rayleigh fading is assumed in all cases. General Bayesian approach is used to derive both iterative and non-iterative estimators whose performance is obtained in the large system limit via the replica method from statistical physics. The effect of spatial correlation on the performance of a multiple antenna CDMA system operating in a flat-fading channel is studied. Per-antenna spreading (PAS) with random signature sequences and spatial multiplexing is used at the transmitter. Non-iterative multiuser detectors (MUDs) using imperfect channel state information (CSI) are derived. Training symbol based channel estimators having mismatched a priori knowledge about the antenna correlation are considered. Both the channel estimator and the MUD are shown to admit a simple ...

Vehkapera, Mikko — Norwegian University of Science and Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.