Adaptive Nonlocal Signal Restoration and Enhancement Techniques for High-Dimensional Data

The large number of practical applications involving digital images has motivated a significant interest towards restoration solutions that improve the visual quality of the data under the presence of various acquisition and compression artifacts. Digital images are the results of an acquisition process based on the measurement of a physical quantity of interest incident upon an imaging sensor over a specified period of time. The quantity of interest depends on the targeted imaging application. Common imaging sensors measure the number of photons impinging over a dense grid of photodetectors in order to produce an image similar to what is perceived by the human visual system. Different applications focus on the part of the electromagnetic spectrum not visible by the human visual system, and thus require different sensing technologies to form the image. In all cases, even with the advance of ...

Maggioni, Matteo — Tampere University of Technology


Modeling of Magnetic Fields and Extended Objects for Localization Applications

The level of automation in our society is ever increasing. Technologies like self-driving cars, virtual reality, and fully autonomous robots, which all were unimaginable a few decades ago, are realizable today, and will become standard consumer products in the future. These technologies depend upon autonomous localization and situation awareness where careful processing of sensory data is required. To increase efficiency, robustness and reliability, appropriate models for these data are needed. In this thesis, such models are analyzed within three different application areas, namely (1) magnetic localization, (2) extended target tracking, and (3) autonomous learning from raw pixel information. Magnetic localization is based on one or more magnetometers measuring the induced magnetic field from magnetic objects. In this thesis we present a model for determining the position and the orientation of small magnets with an accuracy of a few millimeters. This ...

Wahlström, Niklas — Linköping University


Exact Unbiased Inverse of the Anscombe Transformation and its Poisson-Gaussian Generalization

Digital image acquisition is an intricate process, which is subject to various errors. Some of these errors are signal-dependent, whereas others are signal-independent. In particular, photon emission and sensing are inherently random physical processes, which in turn substantially contribute to the randomness in the output of the imaging sensor. This signal-dependent noise can be approximated through a Poisson distribution. On the other hand, there are various signal-independent noise sources involved in the image capturing chain, arising from the physical properties and imperfections of the imaging hardware. The noise attributed to these sources is typically modelled collectively as additive white Gaussian noise. Hence, we have three common ways of modelling the noise present in a digital image: Gaussian, Poisson, or Poisson-Gaussian. Image denoising aims at removing or attenuating this noise from the captured image, in order to provide an estimate of ...

Mäkitalo, Markku — Tampere University of Technology


Lossless and nearly lossless digital video coding

In lossless coding, compresssion and decompression of source data result in the exact recovery of the individual elements of the original source data. Lossless image / video coding is necessary in applications where no loss of pixel values is tolerable. Examples are medical imaging, remote sensing, in image/video archives and studio applications where tandem- and trans-coding are used in editing, which can lead to accumulating errors. Nearly-lossless coding is used in applications where a small error, defined as a maximum error or as a root mean square (rms) error, is tolerable. In lossless embedded coding, a losslessly coded bit stream can be decoded at any bit rate lower than the lossless bit rate. In this thesis, research on embedded lossless video coding based on a motion compensated framework, similar to that of MPEG-2, is presented. Transforms that map integers into ...

Abhayaratne, Charith — University of Bath


Extended target tracking using PHD filters

The world in which we live is becoming more and more automated, exemplified by the numerous robots, or autonomous vehicles, that operate in air, on land, or in water. These robots perform a wide array of different tasks, ranging from the dangerous, such as underground mining, to the boring, such as vacuum cleaning. In common for all different robots is that they must possess a certain degree of awareness, both of themselves and of the world in which they operate. This thesis considers aspects of two research problems associated with this, more specifically the Simultaneous Localization and Mapping (SLAM) problem and the Multiple Target Tracking (MTT) problem. The SLAM problem consists of having the robot create a map of an environment and simultaneously localize itself in the same map. One way to reduce the effect of small errors that inevitably ...

Granström, Karl — Linköping University


Sparsity Models for Signals: Theory and Applications

Many signal and image processing applications have benefited remarkably from the theory of sparse representations. In its classical form this theory models signal as having a sparse representation under a given dictionary -- this is referred to as the "Synthesis Model". In this work we focus on greedy methods for the problem of recovering a signal from a set of deteriorated linear measurements. We consider four different sparsity frameworks that extend the aforementioned synthesis model: (i) The cosparse analysis model; (ii) the signal space paradigm; (iii) the transform domain strategy; and (iv) the sparse Poisson noise model. Our algorithms of interest in the first part of the work are the greedy-like schemes: CoSaMP, subspace pursuit (SP), iterative hard thresholding (IHT) and hard thresholding pursuit (HTP). It has been shown for the synthesis model that these can achieve a stable recovery ...

Giryes, Raja — Technion


Spatiotonal Adaptivity in Super-Resolution of under-sampled Image Sequences

This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4), super-resolution restoration (chapter 5), and super-resolution synthesis (chapter 6). Chapter 2 derives the Cramer-Rao lower bound of image registration and shows that iterative gradient-based estimators achieve this performance limit. Chapter 3 presents an algorithm for image fusion of irregularly sampled and uncertain data using robust normalized convolution. The size and shape of the fusion kernel is adapted to local curvilinear structures in the image. Each data sample is assigned an intensity-related certainty value to limit the influence of outliers. Chapter 4 presents two fast implementations of the signal-adaptive bilateral filter. The xy-separable implementation filters ...

Pham, Tuan Q. — Delft University of Technology


Distributed Adaptive Spatial Filtering in Resource-constrained Sensor Networks

Wireless sensor networks consist in a collection of battery-powered sensors able to gather, process and send data. They are typically used to monitor various phenomenons, in a plethora of fields, from environmental studies to smart logistics. Their wireless connectivity and relatively small size allow them to be deployed practically anywhere, even underwater or embedded in everyday clothing, and possibly capture data over a large area for extended periods of time. Their usefulness is therefore tied to their ability to work autonomously, with as little human intervention as possible. This functional requirement directly translates into two design constraints: (i) bandwidth and on-board compute must be used sparingly, in order to extend battery-life as much as possible, and (ii) the system must be resilient to node failures and changing environment. Due to their limited computing capabilities, data processing is usually performed by ...

Hovine, Charles — KU Leuven


Tracking and Planning for Surveillance Applications

Vision and infrared sensors are very common in surveillance and security applications, and there are numerous examples where a critical infrastructure, e.g. a harbor, an airport, or a military camp, is monitored by video surveillance systems. There is a need for automatic processing of sensor data and intelligent control of the sensor in order to obtain efficient and high performance solutions that can support a human operator. This thesis considers two subparts of the complex sensor fusion system; namely target tracking and sensor control.The multiple target tracking problem using particle filtering is studied. In particular, applications where road constrained targets are tracked with an airborne video or infrared camera are considered. By utilizing the information about the road network map it is possible to enhance the target tracking and prediction performance. A dynamic model suitable for on-road target tracking with ...

Skoglar, Per — Linköping University, Department of Electrical Engineering


Three dimensional shape modeling: segmentation, reconstruction and registration

Accounting for uncertainty in three-dimensional (3D) shapes is important in a large number of scientific and engineering areas, such as biometrics, biomedical imaging, and data mining. It is well known that 3D polar shaped objects can be represented by Fourier descriptors such as spherical harmonics and double Fourier series. However, the statistics of these spectral shape models have not been widely explored. This thesis studies several areas involved in 3D shape modeling, including random field models for statistical shape modeling, optimal shape filtering, parametric active contours for object segmentation and surface reconstruction. It also investigates multi-modal image registration with respect to tumor activity quantification. Spherical harmonic expansions over the unit sphere not only provide a low dimensional polarimetric parameterization of stochastic shape, but also correspond to the Karhunen-Lo´eve (K-L) expansion of any isotropic random field on the unit sphere. Spherical ...

Li, Jia — University of Michigan


Lapped Nonuniform Orthogonal Transforms with Compact Support

Filterbanks are an integral part of most perceptual coder systems, tasked with shaping the noise produced by the quantizer in the en- coder. Because of this shaping, the quantizer noise can then be con- trolled to stay below the masking threshold of the human ear, and become inaudible. In most current perceptual coders, an unmodified MDCT is used as the filterbank, as the MDCT has many properties that make it a good choice for this scenario. One disadvantage, however, is the uniform time-frequency reso- lution of the MDCT. This stands in contrast to the human auditory system, which has a non-uniform time-frequency resolution. This mis- match results in an unexploited gap that, if closed, could lead to a more efficient perceptual audio coder. Previous work has attempted to design non-uniform filterbanks us- ing MDCTs and subband merging, but with system ...

Werner, Nils — Friedrich-Alexander-Universität Erlangen-Nürnberg


Speech Enhancement Using Nonnegative Matrix Factorization and Hidden Markov Models

Reducing interference noise in a noisy speech recording has been a challenging task for many years yet has a variety of applications, for example, in handsfree mobile communications, in speech recognition, and in hearing aids. Traditional single-channel noise reduction schemes, such as Wiener filtering, do not work satisfactorily in the presence of non-stationary background noise. Alternatively, supervised approaches, where the noise type is known in advance, lead to higher-quality enhanced speech signals. This dissertation proposes supervised and unsupervised single-channel noise reduction algorithms. We consider two classes of methods for this purpose: approaches based on nonnegative matrix factorization (NMF) and methods based on hidden Markov models (HMM). The contributions of this dissertation can be divided into three main (overlapping) parts. First, we propose NMF-based enhancement approaches that use temporal dependencies of the speech signals. In a standard NMF, the important temporal ...

Mohammadiha, Nasser — KTH Royal Institute of Technology


Distributed Source Coding. Tools and Applications to Video Compression

Distributed source coding is a technique that allows to compress several correlated sources, without any cooperation between the encoders, and without rate loss provided that the decoding is joint. Motivated by this principle, distributed video coding has emerged, exploiting the correlation between the consecutive video frames, tremendously simplifying the encoder, and leaving the task of exploiting the correlation to the decoder. The first part of our contributions in this thesis presents the asymmetric coding of binary sources that are not uniform. We analyze the coding of non-uniform Bernoulli sources, and that of hidden Markov sources. For both sources, we first show that exploiting the distribution at the decoder clearly increases the decoding capabilities of a given channel code. For the binary symmetric channel modeling the correlation between the sources, we propose a tool to estimate its parameter, thanks to an ...

Toto-Zarasoa, Velotiaray — INRIA Rennes-Bretagne Atlantique, Universite de Rennes 1


Sensor Fusion for Automotive Applications

Mapping stationary objects and tracking moving targets are essential for many autonomous functions in vehicles. In order to compute the map and track estimates, sensor measurements from radar, laser and camera are used together with the standard proprioceptive sensors present in a car. By fusing information from different types of sensors, the accuracy and robustness of the estimates can be increased. Different types of maps are discussed and compared in the thesis. In particular, road maps make use of the fact that roads are highly structured, which allows relatively simple and powerful models to be employed. It is shown how the information of the lane markings, obtained by a front looking camera, can be fused with inertial measurement of the vehicle motion and radar measurements of vehicles ahead to compute a more accurate and robust road geometry estimate. Further, it ...

Lundquist, Christian — Linköping University


Distributed Spatial Filtering in Wireless Sensor Networks

Wireless sensor networks (WSNs) paved the way for accessing data previously unavailable by deploying sensors in various locations in space, each collecting local measurements of a target source signal. By exploiting the information resulting from the multitude of signals measured at the different sensors of the network, various tasks can be achieved, such as denoising or dimensionality reduction which can in turn be used, e.g., for source localization or detecting seizures from electroencephalography measurements. Spatial filtering consists of linearly combining the signals measured at each sensor of the network such that the resulting filtered signal is optimal in some sense. This technique is widely used in biomedical signal processing, wireless communication, and acoustics, among other fields. In spatial filtering tasks, the aim is to exploit the correlation between the signals of all sensors in the network, therefore requiring access to ...

Musluoglu, Cem Ates — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.