Diversity Gain Enhancement for Extended Orthogonal Space-Time Block Coding in Wireless Communications

Transmit diversity is a powerful technique for enhancing the channel capacity and reliability of multiple-input and multiple-output (MIMO) wireless systems. This thesis considers extended orthogonal space-time block coding (EO-STBC) with beamsteering angles, which have previously been shown to potentially achieve full diversity and array gain with four transmit and one receive antenna. The optimum setting of beamsteering angles applied in the transmitter, which has to be calculated based on channel state information (CSI) at the receiver side, must be quantised and feed back to the transmitter via a reverse feedback link. When operating in a fading scenario, channel coefficients vary smoothly with time. This smooth evolution of channel coefficients motivates the investigation of differential feedback, which can reduce the number of feedback bits, while potentially maintaining near optimum performance. The hypothesis that the smooth evolution of channel coefficients translates into ...

Hussin, Mohamed Nuri Ahmed — University of Strathclyde


Scalable Single and Multiple Description Scalar Quantization

Scalable representation of a source (e.g., image/video/3D mesh) enables decoding of the encoded bit-stream on a variety of end-user terminals with varying display, storage and processing capabilities. Furthermore, it allows for source communication via channels with different transmission bandwidths, as the source rate can be easily adapted to match the available channel bandwidth. From a different perspective, error-resilience against channel losses is also very important when transmitting scalable source streams over lossy transmission channels. Driven by the aforementioned requirements of scalable representation and error-resilience, this dissertation focuses on the analysis and design of scalable single and multiple description scalar quantizers. In the first part of this dissertation, we consider the design of scalable wavelet-based semi-regular 3D mesh compression systems. In this context, our design methodology thoroughly analyzes different modules of the mesh coding system in order to single-out appropriate design ...

Satti, Shahid Mahmood — Vrije Universiteit Brussel


Advances in Perceptual Stereo Audio Coding Using Linear Prediction Techniques

A wide range of techniques for coding a single-channel speech and audio signal has been developed over the last few decades. In addition to pure redundancy reduction, sophisticated source and receiver models have been considered for reducing the bit-rate. Traditionally, speech and audio coders are based on different principles and thus each of them offers certain advantages. With the advent of high capacity channels, networks, and storage systems, the bit-rate versus quality compromise will no longer be the major issue; instead, attributes like low-delay, scalability, computational complexity, and error concealments in packet-oriented networks are expected to be the major selling factors. Typical audio coders such as MP3 and AAC are based on subband or transform coding techniques that are not easily reconcilable with a low-delay requirement. The reasons for their inherently longer delay are the relatively long band splitting filters ...

Biswas, Arijit — Technische Universiteit Eindhoven


Feedback-Channel and Adaptive MIMO Coded-Modulations

When the transmitter of a communication system disposes of some Channel State Information (CSI), it is possible to design linear precoders that optimally allocate the power inducing high gains either in terms of capacity or in terms of reliable communications. In practical scenarios, this channel knowledge is not perfect and thus the transmitted signal suffers from the mismatch between the CSI at the transmitter and the real channel. In that context, this thesis deals with two different, but related, topics: the design of a feasible transmitter channel tracker for time varying channels, and the design of optimal linear precoders robust to imperfect channel estimates. The first part of the thesis proposes the design of a channel tracker that provides an accurate CSI at the transmitter by means of a low capacity feedback link. Historically, those schemes have been criticized because ...

Rey, Francesc — Universitat Politecnica de Catalunya


MPEGII Video Coding For Noisy Channels

This thesis considers the performance of MPEG-II compressed video when transmitted over noisy channels, a subject of relevance to digital terrestrial television, video communication and mobile digital video. Results of bit sensitivity and resynchronisation sensitivity measurements are presented and techniques proposed for substantially improving the resilience of MPEG-II to transmission errors without the addition of any extra redundancy into the bitstream. It is errors in variable length encoded data which are found to cause the greatest artifacts as errors in these data can cause loss of bitstream synchronisation. The concept of a ‘black box transcoder’ is developed where MPEG-II is losslessly transcoded into a different structure for transmission. Bitstream resynchronisation is achieved using a technique known as error-resilient entropy coding (EREC). The error-resilience of differentially coded information is then improved by replacing the standard 1D-DPCM with a more resilient hierarchical ...

Swan, Robert — University of Cambridge


Iterative Joint Source-Channel Coding Techniques for Single and Multiterminal Sources in Communication Networks

In a communication system it results undoubtedly of great interest to compress the information generated by the data sources to its most elementary representation, so that the amount of power necessary for reliable communications can be reduced. It is often the case that the redundancy shown by a wide variety of information sources can be modelled by taking into account the probabilistic dependance among consecutive source symbols rather than the probabilistic distribution of a single symbol. These sources are commonly referred to as single or multiterminal sources "with memory" being the memory, in this latter case, the existing temporal correlation among the consecutive symbol vectors generated by the multiterminal source. It is well known that, when the source has memory, the average amount of information per source symbol is given by the entropy rate, which is lower than its entropy ...

Del Ser, Javier — University of Navarra (TECNUN)


Error Resilience and Concealment Techniques for High Efficiency Video Coding

This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the ...

João Filipe Monteiro Carreira — Loughborough University London


Robust Signal Processing with Applications to Positioning and Imaging

This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...

Li, Haoqing — Northeastern University


Iterative Multi-User Receivers for CDMA Systems

Mobile communication networks of the third and future generations are designed to offer high-data rate services like video-telephony and data-transfer. The current Rake receiver architecture will create a shortage in available bandwidth offered to the users. This is not due to a shortage in spectrum but results from inefficient receiver architectures. Spectral efficiency can be increased considerably through multi-user detection techniques in the receiver algorithms. The present thesis investigates iterative re- ceivers for encoded CDMA transmission in the uplink. The iterative receiver is a suboptimal receiver algorithm with manageable complexity. It consists of an inter- ference mitigating multi-user detector, a bank of single-user decoders, and a channel estimator. Instead of deciding on the transmitted symbols right after the first decod- ing, the receiver feeds back tentative decision symbols to mitigate multiple-access interference in the next iteration. Similarly, soft decision symbols ...

Wehinger, J. — Vienna University of Technology


Efficient Perceptual Audio Coding Using Cosine and Sine Modulated Lapped Transforms

The increasing number of simultaneous input and output channels utilized in immersive audio configurations primarily in broadcasting applications has renewed industrial requirements for efficient audio coding schemes with low bit-rate and complexity. This thesis presents a comprehensive review and extension of conventional approaches for perceptual coding of arbitrary multichannel audio signals. Particular emphasis is given to use cases ranging from two-channel stereophonic to six-channel 5.1-surround setups with or without the application-specific constraint of low algorithmic coding latency. Conventional perceptual audio codecs share six common algorithmic components, all of which are examined extensively in this thesis. The first is a signal-adaptive filterbank, constructed using instances of the real-valued modified discrete cosine transform (MDCT), to obtain spectral representations of successive portions of the incoming discrete time signal. Within this MDCT spectral domain, various intra- and inter-channel optimizations, most of which are of ...

Helmrich, Christian R. — Friedrich-Alexander-Universität Erlangen-Nürnberg


Robust and multiresolution video delivery : From H.26x to Matching pursuit based technologies

With the joint development of networking and digital coding technologies multimedia and more particularly video services are clearly becoming one of the major consumers of the new information networks. The rapid growth of the Internet and computer industry however results in a very heterogeneous infrastructure commonly overloaded. Video service providers have nevertheless to oer to their clients the best possible quality according to their respective capabilities and communication channel status. The Quality of Service is not only inuenced by the compression artifacts, but also by unavoidable packet losses. Hence, the packet video stream has clearly to fulll possibly contradictory requirements, that are coding eciency and robustness to data loss. The rst contribution of this thesis is the complete modeling of the video Quality of Service (QoS) in standard and more particularly MPEG-2 applications. The performance of Forward Error Control (FEC) ...

Frossard, Pascal — Swiss Federal Institute of Technology


Hierarchical Lattice Vector Quantisation Of Wavelet Transformed Images

The objectives of the research were to develop embedded and non-embedded lossy coding algorithms for images based on lattice vector quantisation and the discrete wavelet transform. We also wanted to develop context-based entropy coding methods (as opposed to simple first order entropy coding). The main objectives can therefore be summarised as follows: (1) To develop algorithms for intra and inter-band formed vectors (vectors with coefficients from the same sub-band or across different sub-bands) which compare favourably with current high performance wavelet based coders both in terms of rate/distortion performance of the decoded image and also subjective quality; (2) To develop new context-based coding methods (based on vector quantisation). The alternative algorithms we have developed fall into two categories: (a) Entropy coded and Binary uncoded successive approximation lattice vector quantisation (SALVQ- E and SA-LVQ-B) based on quantising vectors formed intra-band. This ...

Vij, Madhav — University of Cambridge, Department of Engineering, Signal Processing Group


Distributed Source Coding. Tools and Applications to Video Compression

Distributed source coding is a technique that allows to compress several correlated sources, without any cooperation between the encoders, and without rate loss provided that the decoding is joint. Motivated by this principle, distributed video coding has emerged, exploiting the correlation between the consecutive video frames, tremendously simplifying the encoder, and leaving the task of exploiting the correlation to the decoder. The first part of our contributions in this thesis presents the asymmetric coding of binary sources that are not uniform. We analyze the coding of non-uniform Bernoulli sources, and that of hidden Markov sources. For both sources, we first show that exploiting the distribution at the decoder clearly increases the decoding capabilities of a given channel code. For the binary symmetric channel modeling the correlation between the sources, we propose a tool to estimate its parameter, thanks to an ...

Toto-Zarasoa, Velotiaray — INRIA Rennes-Bretagne Atlantique, Universite de Rennes 1


Multiple Description Coding for Path Diversity Video Streaming

In the current heterogeneous communication environments, the great variety of multimedia systems and applications combined with fast evolution of networking architectures and topologies, give rise to new research problems related to the various elements of the communication chain. This includes, the ever present problem in video communications, which results from the need for coping with transmission errors and losses. In this context, video streaming with path diversity appeared as a novel communication framework, involving different technological fields and posing several research challenges. The research work carried out in this thesis is a contribution to robust video coding and adaptation techniques in the field of Multiple Description Coding (MDC) for multipath video streaming. The thesis starts with a thorough study of MDC and its theoretical basis followed by a description of the most important practical implementation aspects currently available in literature. ...

Correia, Pedro Daniel Frazão — University of Coimbra


Contributions to Improved Hard- and Soft-Decision Decoding in Speech and Audio Codecs

Source coding is an essential part in digital communications. In error-prone transmission conditions, even with the help of channel coding, which normally introduces delay, bit errors may still occur. Single bit errors can result in significant distortions. Therefore, a robust source decoder is desired for adverse transmission conditions. Compared to the traditional hard-decision (HD) decoding and error concealment, soft-decision (SD) decoding offers a higher robustness by exploiting the source residual redundancy and utilizing the bit-wise channel reliability information. Moreover, the quantization codebook index can be either mapped to a fixed number of bits using fixed-length (FL) codes, or a variable number of bits employing variable-length (VL) codes. The codebook entry can be either fixed over time or time-variant. However, using a fixed scalar quantization codebook leads to the same performance for correlated and uncorrelated processes. This thesis aims to improve ...

Han, Sai — Technische Universität Braunschweig

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.