Statistical methods using hydrodynamic simulations of stellar atmospheres for detecting exoplanets in radial velocity data

When the noise affecting time series is colored with unknown statistics, a difficulty for periodic signal detection is to control the true significance level at which the detection tests are conducted. This thesis investigates the possibility of using training datasets of the noise to improve this control. Specifically, for the case of regularly sampled observations, we analyze the performances of various detectors applied to periodograms standardized using the noise training datasets. Emphasis is put on sparse detection in the Fourier domain and on the limitation posed by the necessary finite size of the training sets available in practice. We study the resulting false alarm and detection rates and show that the proposed standardization leads, in some cases, to powerful constant false alarm rate tests. Although analytical results are derived in an asymptotic regime, numerical results show that the theory accurately ...

Sulis Sophia — Université Côte d’Azur


Statistical Signal Processing for Data Fusion

In this dissertation we focus on statistical signal processing for Data Fusion, with a particular focus on wireless sensor networks. Six topics are studied: (i) Data Fusion for classification under model uncertainty; (ii) Decision Fusion over coherent MIMO channels; (iii) Performance analysis of Maximum Ratio Combining in MIMO decision fusion; (iv) Decision Fusion over non-coherent MIMO channels; (v) Decision Fusion for distributed classification of multiple targets; (vi) Data Fusion for inverse localization problems, with application to wideband passive sonar platform estimation. The first topic of this thesis addresses the problem of lack of knowledge of the prior distribution in classification problems that operate on small data sets that may make the application of Bayes' rule questionable. Uniform or arbitrary priors may provide classification answers that, even in simple examples, may end up contradicting our common sense about the problem. Entropic ...

Ciuonzo, Domenico — Second University of Naples


Distributed Detection and Localization

This thesis delves into the detection and localization aspects of distributed Wireless Sensor Networks (WSNs). Specifically, the research concentrates on WSNs in which sensors autonomously carry out detection tasks and transmit their decisions to a fusion center (FC). The FC’s role is to make a comprehensive decision about the presence of a specific event of interest and estimate its potential location. Given its broad significance, the thesis specializes in applying WSNs for industrial monitoring, particularly in the process and energy industry. Three distinct approaches are explored in this thesis: (i) per-sample/batch detection, (ii) quickest detection, and (iii) sequential detection. Each framework proposes a set of detection and associated localization rules. A primary objective of this work is to develop detection and localization strategies that leverage existing information about the monitored environment, bridging the gap between monitoring systems and the knowledge ...

Gianluca Tabella — Norwegian University of Science and Technology


Detection in strongly nonhomogeneous data and application to airborne RADAR

The constant false alarm rate detection of punctual targets embedded in strongly nonhomogeneous data is a difficult task. Indeed, the standard detection techniques do not allow one to get an appropriate regulation of the false alarm rate. In this manuscript, we present three new solutions for this issue. The developed methods are applied on simulated range/doppler maps that arise on the airborne RADAR context. These three approaches are compared by numerical simulations to the classical detection methods. Compared to the standard techniques and within the scope of the studied model, the proposed solutions allow one to get a better false alarm rate regulation and better detection capacities.

Magraner, Eric — Fresnel Institute


A Statistical Theory for GNSS Signal Acquisition

Acquisition is the first stage of a Global Navigation Satellite System (GNSS) receiver and has the goal to determine which signals are in view and provide rough estimates of the signal parameters. The main objective of the thesis was to provide a complete and cohesive analysis of the acquisition process clarifying different aspects often neglected in the literature. The thesis provides the statistical tools required for the characterization of the acquisition process. In particular, the signal presence is determined by searching several candidates for the signal code delay and Doppler frequency which define a cell of the acquisition search space. Thus, the acquisition process is characterized by the strategy adopted for searching for the signal parameters and the way a decision metric is compute for each cell of the search space. Given this observation, the thesis introduces the concepts of ...

Daniele, Borio — Politecnico di Torino


Bayesian State-Space Modelling of Spatio-Temporal Non-Gaussian Radar Returns

Radar backscatter from an ocean surface is commonly referred to as sea clutter. Any radar backscatter not due to the scattering from an ocean surface constitutes a potential target. This thesis is concerned with the study of target detection techniques in the presence of high resolution sea clutter. In this dissertation, the high resolution sea clutter is treated as a compound process, where a fast oscillating speckle component is modulated in power by a slowly varying modulating component. While the short term temporal correlations of the clutter are associated with the speckle, the spatial correlations are largely associated with the modulating component. Due to the disparate statistical and correlation properties of the two components, a piecemeal approach is adopted throughout this thesis, whereby the spatial and the temporal correlations of high resolution sea clutter are treated independently. As an extension ...

Noga, Jacek Leszek — University of Cambridge


Energy-Efficient Spectrum Sensing for Cognitive Radio Networks

Dynamic spectrum access employing cognitive radios has been proposed, in order to opportunistically use underutilized spectrum portions of a heavily licensed electromagnetic spectrum. Cognitive radios opportunistically share the spectrum, while avoiding any harmful interference to the primary licensed users. One major category of cognitive radios consists of is interweave cognitive radios. In this category, cognitive radios employ spectrum sensing to detect the empty bands of the radio spectrum, also known as spectrum holes. Upon detection of such a spectrum hole, cognitive radios dynamically share this empty band. However, as soon as the primary user appears in the corresponding band, cognitive radios have to vacate the band and look for a new spectrum hole. This way, reliable spectrum sensing becomes a key functionality of a cognitive radio network. The hidden terminal problem and fading effects have been shown to limit the ...

Maleki, Sina — TU Delft


Fire Detection Algorithms Using Multimodal Signal and Image Analysis

Dynamic textures are common in natural scenes. Examples of dynamic textures in video include fire, smoke, clouds, volatile organic compound (VOC) plumes in infra-red (IR) videos, trees in the wind, sea and ocean waves, etc. Researchers extensively studied 2-D textures and related problems in the fields of image processing and computer vision. On the other hand, there is very little research on dynamic texture detection in video. In this dissertation, signal and image processing methods developed for detection of a specific set of dynamic textures are presented. Signal and image processing methods are developed for the detection of flames and smoke in open and large spaces with a range of up to $30$m to the camera in visible-range (IR) video. Smoke is semi-transparent at the early stages of fire. Edges present in image frames with smoke start loosing their sharpness ...

Toreyin, Behcet Ugur — Bilkent University


Self-Organization and Data Compression in Wireless Sensor Networks of Extreme Scales: Application to Environmental Monitoring, Climatology and Bioengineering

Wireless Sensor Networks (WSNs) aim for accurate data gathering and representation of one or multiple physical variables from the environment, by means of sensor reading and wireless data packets transmission to a Data Fusion Center (DFC). There is no comprehensive common set of requirements for all WSN, as they are application dependent. Moreover, due to specific node capabilities or energy consumption constraints several tradeoffs have to be considered during the design, and particularly, the price of the sensor nodes is a determining factor. The distinction between small and large scale WSNs does not only refers to the quantity of sensor nodes, but also establishes the main design challenges in each case. For example, the node organization is a key issue in large scale WSNs, where many inexpensive nodes have to properly work in a coordinated manner. Regarding the amount of ...

Chidean, Mihaela I. — Rey Juan Carlos University


Digital Processing Based Solutions for Life Science Engineering Recognition Problems

The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...

Hussein, Walid — Technische Universität München


Iterative Joint Source-Channel Coding Techniques for Single and Multiterminal Sources in Communication Networks

In a communication system it results undoubtedly of great interest to compress the information generated by the data sources to its most elementary representation, so that the amount of power necessary for reliable communications can be reduced. It is often the case that the redundancy shown by a wide variety of information sources can be modelled by taking into account the probabilistic dependance among consecutive source symbols rather than the probabilistic distribution of a single symbol. These sources are commonly referred to as single or multiterminal sources "with memory" being the memory, in this latter case, the existing temporal correlation among the consecutive symbol vectors generated by the multiterminal source. It is well known that, when the source has memory, the average amount of information per source symbol is given by the entropy rate, which is lower than its entropy ...

Del Ser, Javier — University of Navarra (TECNUN)


Development of Fast Machine Learning Algorithms for False Discovery Rate Control in Large-Scale High-Dimensional Data

This dissertation develops false discovery rate (FDR) controlling machine learning algorithms for large-scale high-dimensional data. Ensuring the reproducibility of discoveries based on high-dimensional data is pivotal in numerous applications. The developed algorithms perform fast variable selection tasks in large-scale high-dimensional settings where the number of variables may be much larger than the number of samples. This includes large-scale data with up to millions of variables such as genome-wide association studies (GWAS). Theoretical finite sample FDR-control guarantees based on martingale theory have been established proving the trustworthiness of the developed methods. The practical open-source R software packages TRexSelector and tlars, which implement the proposed algorithms, have been published on the Comprehensive R Archive Network (CRAN). Extensive numerical experiments and real-world problems in biomedical and financial engineering demonstrate the performance in challenging use-cases. The first three main parts of this dissertation present ...

Machkour, Jasin — Technische Universität Darmstadt


Advanced GPR data processing algorithms for detection of anti-personnel landmines

Ground Penetrating Radar (GPR) is seen as one of several promising technologies aimed to help mine detection. GPR is sensitive to any inhomogeneity in the ground. Therefore any APM regardless of the metal content can be detected. On the other hand, all the inhomogeneities, which do not represent mines, show up as a clutter in GPR images. Moreover, it is known that reflectivity of APM is often weaker than that of stones, pieces of shrapnel and barbed wire, etc. Altogether these factors cause GPR to produce unacceptably high false alarm rate whilst it reaches the 99.6% detection rate which is prescribed by an UN resolution as a standard for humanitarian demining. The main goal of the work presented in the thesis is reduction of the false alarm rate while keeping the 99.6% detection rate intact. To reach this goal a ...

Kovalenko, Vsevolod — Delft University of Technology


Signal Processing for Energy-Efficient Burst-Mode RF Transmitters

Modern wireless communication systems utilize complex modulated signals such as OFDM signals to achieve increased data rates and spectral efficiency. These signals are characterized by a high peak-to-average-power ratio (PAPR). Thus, highly linear transmitters are required to provide sufficient transmission signal linearity. Conventional linear PAs, such as Class A or Class AB, produce high efficiency only near or at the peak output power region. As a result, the average efficiency is quite low for high PAPR signals. For non-portable devices such as base stations or mobile devices like mobile phones, low PA efficiency means higher heat dissipation which is often a design criterion. In addition, in mobile devices, a direct consequence of the low PA efficiency is the reduced battery lifetime, especially when the mobile device is required to operate at quite different output power levels. This thesis addresses the ...

Chi, Shuli — Signal Processing and Speech Communication Laboratory


Film and Video Restoration using Rank-Order Models

This thesis introduces the rank-order model and investigates its use in several image restoration problems. More commonly used as filters, the rank-order operators are here employed as predictors. A Laplacian excitation sequence is chosen to complete the model. Images are generated with the model and compared with those formed with an AR model. A multidimensional rankorder model is formed from vector medians for use with multidimensional image data. The first application using the rank-order model is an impulsive noise detector. This exploits the notion of ‘multimodality’ in the histogram of a difference image of the degraded image and a rank-order filtered version. It uses the EM algorithm and a mixture model to automatically determine thresholds for detecting the impulsive noise. This method compares well with other detection methods, which require manual setting of thresholds, and to stack filtering, which requires ...

Armstrong, Steven — University of Cambridge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.