Audio Watermarking, Steganalysis Using Audio Quality Metrics, and Robust Audio Hashing (2005)
Steganoflage: A New Image Steganography Algorithm
Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, e.g., image, audio and video files. It comes under the assumption that if the feature is visible, the point of attack is evident, thus the goal here is always to conceal the very existence of the embedded data. It does not replace cryptography but rather boosts the security using its obscurity features. Steganography has various useful applications. However, like any other science it can be used for ill intentions. It has been propelled to the forefront of current security techniques by the remarkable growth in computational power, the increase in security awareness, e.g., individuals, groups, agencies, government and through intellectual pursuit. Steganography’s ultimate objectives, which are undetectability, robustness, resistance to various image processing methods and compression, and capacity of the hidden data, are the main factors ...
Cheddad Abbas — University of Ulster
Geometric Distortion in Image and Video Watermarking. Robustness and Perceptual Quality Impact
The main focus of this thesis is the problem of geometric distortion in image and video watermarking. In this thesis we discuss the two aspects of the geometric distortion problem, namely the watermark desynchronization aspect and the perceptual quality assessment aspect. Furthermore, this thesis also discusses the challenges of watermarking data compressed in low bit-rates. The main contributions of this thesis are: A watermarking algorithm suitable for low bit-rate video has been proposed. Two different approaches has been proposed to deal with the watermark desynchronization problem. A novel approach has been proposed to quantify the perceptual quality impact of geometric distortion.
Setyawan, Iwan — Delft University of Technology
Image Quality Statistics and their use in Steganalysis and Compression
We categorize comprehensively image quality measures, extend measures defined for gray scale images to their multispectral case, and propose novel image quality measures. The statistical behavior of the measures and their sensitivity to various kinds of distortions, data hiding and coding artifacts are investigated via Analysis of Variance techniques. Their similarities or differences have been illustrated by plotting their Kohonen maps. Measures that give consistent scores across an image class and that are sensitive to distortions and coding artifacts are pointed out. We present techniques for steganalysis of images that have been potentially subjected to watermarking or steganographic algorithms. Our hypothesis is that watermarking and steganographic schemes leave statistical evidence that can be exploited for detection with the aid of image quality features and multivariate regression analysis. The steganalyzer is built using multivariate regression on the selected quality metrics. In ...
Avcibas, Ismail — Bogazici University
Vision models and quality metrics for image processing applications
Optimizing the performance of digital imaging systems with respect to the capture, display, storage and transmission of visual information represents one of the biggest challenges in the field of image and video processing. Taking into account the way humans perceive visual information can be greatly beneficial for this task. To achieve this, it is necessary to understand and model the human visual system, which is also the principal goal of this thesis. Computational models for different aspects of the visual system are developed, which can be used in a wide variety of image and video processing applications. The proposed models and metrics are shown to be consistent with human perception. The focus of this work is visual quality assessment. A perceptual distortion metric (PDM) for the evaluation of video quality is presented. It is based on a model of the ...
Winkler, Stefan — Swiss Federal Institute of Technology
Speech Watermarking and Air Traffic Control
Air traffic control (ATC) voice radio communication between aircraft pilots and controllers is subject to technical and functional constraints owing to the legacy radio system currently in use worldwide. This thesis investigates the embedding of digital side information, so called watermarks, into speech signals. Applied to the ATC voice radio, a watermarking system could overcome existing limitations, and ultimately increase safety, security and efficiency in ATC. In contrast to conventional watermarking methods, this field of application allows embedding of the data in perceptually irrelevant signal components. We show that the resulting theoretical watermark capacity far exceeds the capacity of conventional watermarking channels. Based on this finding, we present a general purpose blind speech watermarking algorithm that embeds watermark data in the phase of non-voiced speech segments by replacing the excitation signal of an autoregressive signal representation. Our implementation embeds the ...
Hofbauer, Konrad — Graz University
WATERMARKING FOR 3D REPRESENTATIONS
In this thesis, a number of novel watermarking techniques for different 3D representations are presented. A novel watermarking method is proposed for the mono-view video, which might be interpreted as the basic implicit representation of 3D scenes. The proposed method solves the common flickering problem in the existing video watermarking schemes by means of adjusting the watermark strength with respect to temporal contrast thresholds of human visual system (HVS), which define the maximum invisible distortions in the temporal direction. The experimental results indicate that the proposed method gives better results in both objective and subjective measures, compared to some recognized methods in the literature. The watermarking techniques for the geometry and image based representations of 3D scenes, denoted as 3D watermarking, are examined and classified into three groups, as 3D-3D, 3D-2D and 2D-2D watermarking, in which the pair of symbols ...
Koz, Alper — Middle East Technical University, Department of Electrical and Electronics Engineering
Digital Processing Based Solutions for Life Science Engineering Recognition Problems
The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...
Hussein, Walid — Technische Universität München
The work of this thesis can be seen as a first step towards the characterization and quality evaluation of the class of local geometric distortions. A first step to solve the problems with geometric attacks is the characterization of the class of perceptually admissible distortions. This requires the development of models to treat the distortions from a mathematical point of view. In this context, the first part of the thesis focuses on modeling local geometric transformations from a mathematical point of view. Watermarking is not the only field where an analysis of geometric distortion in images would be useful. In all the applications dealing with geometric distortions the availability of an objective quality metric capable of dealing with this kind of distortions would be of invaluable help. Thus, in the second part of the thesis, two objective quality metrics for ...
D'Angelo, Angela — University of Siena
Digital Forensic Techniques for Splicing Detection in Multimedia Contents
Visual and audio contents always played a key role in communications, because of their immediacy and presumed objectivity. This has become even more true in the digital era, and today it is common to have multimedia contents stand as proof of events. Digital contents, however, are also very easy to manipulate, thus calling for analysis methods devoted to uncover their processing history. Multimedia forensics is the science trying to answer questions about the past of a given image, audio or video file, questions like “which was the recording device?", or “is the content authentic?". In particular, authenticity assessment is a crucial task in many contexts, and it usually consists in determining whether the investigated object has been artificially created by splicing together different contents. In this thesis we address the problem of splicing detection in the three main media: image, ...
Fontani, Marco — Dept. of Information Engineering and Mathematics, University of Siena
Deep Learning for Audio Effects Modeling
Audio effects modeling is the process of emulating an audio effect unit and seeks to recreate the sound, behaviour and main perceptual features of an analog reference device. Audio effect units are analog or digital signal processing systems that transform certain characteristics of the sound source. These transformations can be linear or nonlinear, time-invariant or time-varying and with short-term and long-term memory. Most typical audio effect transformations are based on dynamics, such as compression; tone such as distortion; frequency such as equalization; and time such as artificial reverberation or modulation based audio effects. The digital simulation of these audio processors is normally done by designing mathematical models of these systems. This is often difficult because it seeks to accurately model all components within the effect unit, which usually contains mechanical elements together with nonlinear and time-varying analog electronics. Most existing ...
Martínez Ramírez, Marco A — Queen Mary University of London
ROBUST WATERMARKING TECHNIQUES FOR SCALABLE CODED IMAGE AND VIDEO
In scalable image/video coding, high resolution content is encoded to the highest visual quality and the bit-streams are adapted to cater various communication channels, display devices and usage requirements. These content adaptations, which include quality, resolution and frame rate scaling may also affect the content protection data, such as, watermarks and are considered as a potential watermark attack. In this thesis, research on robust watermarking techniques for scalable coded image and video, are proposed and the improvements in robustness against various content adaptation attacks, such as, JPEG 2000 for image and Motion JPEG 2000, MC-EZBC and H.264/SVC for video, are reported. The spread spectrum domain, particularly wavelet-based image watermarking schemes often provides better robustness to compression attacks due to its multi-resolution decomposition and hence chosen for this work. A comprehensive and comparative analysis of the available wavelet-based watermarking schemes,is performed ...
Bhowmik, Deepayan — University of Sheffield
The growing risk of privacy violation and espionage associated with the rapid spread of mobile communications renewed interest in the original concept of sending encrypted voice as audio signal over arbitrary voice channels. The usual methods used for encrypted data transmission over analog telephony turned out to be inadequate for modern vocal links (cellular networks, VoIP) equipped with voice compression, voice activity detection, and adaptive noise suppression algorithms. The limited available bandwidth, nonlinear channel distortion, and signal fadings motivate the investigation of a dedicated, joint approach for speech encoding and encryption adapted to modern noisy voice channels. This thesis aims to develop, analyze, and validate secure and efficient schemes for real-time speech encryption and transmission via modern voice channels. In addition to speech encryption, this study covers the security and operational aspects of the whole voice communication system, as this ...
Krasnowski, Piotr — Université Côte d'Azur
No-Reference Image and Video Quality Assessment
Image and video quality assessment has become an increasingly important subject in digital video coding and transmission scenarios, such as digital television. In this context, a special interest has been put on no-reference objective quality assessment metrics, since they are suitable for real-time quality monitoring once the video delivery system is settled. This Thesis proposes new no-reference quality assessment metrics for images and video. The main goal of the proposed techniques is to estimate the quality of lossy DCT-based encoded video. The proposed metrics share the same key idea: based on elements extracted from the bitstream of the encoded images or video arriving at the point where quality assessment has to be performed, an estimate of the quantization error associated to each DCT coefficient is obtained. Those estimates are perceptually weighted and combined in order to obtain a quality score ...
Brandão, Tomás — Technical University of Lisbon
Acoustic Event Detection: Feature, Evaluation and Dataset Design
It takes more time to think of a silent scene, action or event than finding one that emanates sound. Not only speaking or playing music but almost everything that happens is accompanied with or results in one or more sounds mixed together. This makes acoustic event detection (AED) one of the most researched topics in audio signal processing nowadays and it will probably not see a decline anywhere in the near future. This is due to the thirst for understanding and digitally abstracting more and more events in life via the enormous amount of recorded audio through thousands of applications in our daily routine. But it is also a result of two intrinsic properties of audio: it doesn’t need a direct sight to be perceived and is less intrusive to record when compared to image or video. Many applications such ...
Mina Mounir — KU Leuven, ESAT STADIUS
Watermark-based error concealment algorithms for low bit rate video communications
In this work, a novel set of robust watermark-based error concealment (WEC) algorithms are proposed. Watermarking is used to introduce redundancy to the transmitted data with little or no increase in its bit rate during transmission. The proposed algorithms involve generating a low resolution version of a video frame and seamlessly embedding it as a watermark in the frame itself during encoding. At the receiver, the watermark is extracted from the reconstructed frame and the lost information is recovered using the extracted watermark signal, thus enhancing its perceptual quality. Three DCT-based spread spectrum watermark embedding techniques are presented in this work. The first technique uses a multiplicative Gaussian pseudo-noise with a pre-defined spreading gain and fixed chip rate. The second one is its adaptively scaled version and the third technique uses informed watermarking. Two versions of the low resolution reference, ...
Adsumilli, Chowdary — University of California, Santa Barbara
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.