Meningioma (Brain Tumor) Classification using an Adaptive Discriminant Wavelet Packet Transform (2009)
Meningioma Classification using an Adaptive Discriminant Wavelet Packet Transform
Meningioma subtypes classification is a real world problem from the domain of histological image analysis that requires new methods for its resolution. Computerized histopathology presents a whole new set of problems and introduces new challenges in image classification. High intra-class variation and low inter-class differences in textures is often an issue in histological image analysis problems such as Meningioma subtypes classification. In this thesis, we present an adaptive wavelets based technique that adapts to the variation in the texture of meningioma samples and provides high classification accuracy results. The technique provides a mechanism for attaining an image representation consisting of various spatial frequency resolutions that represent the image and are referred to as subbands. Each subband provides different information pertaining to the texture in the image sample. Our novel method, the Adaptive Discriminant Wavelet Packet Transform (ADWPT), provides a means ...
Qureshi, Hammad — University of Warwick
Tissue Characterisation from Intravascular Ultrasound using Texture Analysis
Intravascular ultrasound has, over the past decade, significantly changed the clinical diagnosis and therapeutic strategy of coronary and vascular disease assessment, as it not only allows visualisation of the vessel lumen, but gives a unique view of the pathophysiologic structure of the artery wall. This information is currently unavailable from the universally accepted instrument for artery assessment, angiography, which has on several occasions had its diagnostic accuracy questioned. With intravascular ultrasound, there is the potential to categorise diseased arterial tissue belonging to distinct pathological groups which can ultimately aid in the understanding of individual lesions as well as making a significant contribution to treatment choice and management of cardiac patients. The high resolution image information offered by intravascular ultrasound provides excellent crosssectional views of coronary artery disease at the level of the disease process itself. This information can be used ...
Nailon, William Henry — University Of Edinburgh
Emotion assessment for affective computing based on brain and peripheral signals
Current Human-Machine Interfaces (HMI) lack of “emotional intelligence”, i.e. they are not able to identify human emotional states and take this information into account to decide on the proper actions to execute. The goal of affective computing is to fill this lack by detecting emotional cues occurring during Human-Computer Interaction (HCI) and synthesizing emotional responses. In the last decades, most of the studies on emotion assessment have focused on the analysis of facial expressions and speech to determine the emotional state of a person. Physiological activity also includes emotional information that can be used for emotion assessment but has received less attention despite of its advantages (for instance it can be less easily faked than facial expressions). This thesis reports on the use of two types of physiological activities to assess emotions in the context of affective computing: the activity ...
Chanel, Guillaume — University of Geneva
Automatic Handwritten Signature Verification - Which features should be looked at?
The increasing need for personal authentication in many daily applications has made biometrics a fundamental research area. In particular, handwritten signatures have long been considered one of the most valuable biometric traits. Signatures are the most popular method for identity verification all over the world, and people are familiar with the use of signatures for identity verification purposes in their everyday life. In fact, signatures are widely used in several daily transactions, being recognized as a legal means of verifying an individual’s identity by financial and administrative institutions. In addition, signature verification has the advantage of being a non-invasive biometric technique. Two categories of signature verification systems can be distinguished taking into account the acquisition device, namely, offline systems, where only the static image of the signature is available, and online systems, where dynamic information acquired during the signing process, ...
Marianela Parodi — Universidad Nacional de Rosario
On Hardware Implementation of Discrete-Time Cellular Neural Networks
Cellular Neural Networks are characterized by simplicity of operation. The network consists of a large number of nonlinear processing units; called cells; that are equally spread in the space. Each cell has a simple function (sequence of multiply-add followed by a single discrimination) that takes an element of a topographic map and then interacts with all cells within a specified sphere of interest through direct connections. Due to their intrinsic parallel computing power, CNNs have attracted the attention of a wide variety of scientists in, e.g., the fields of image and video processing, robotics and higher brain functions. Simplicity of operation together with the local connectivity gives CNNs first-hand advantages for tiled VLSI implementations with very high speed and complexity. The first VLSI implementation has been based on analogue technology but was small and suffered from parasitic capacitances and resistances ...
Malki, Suleyman — Lund University
Wavelet Analysis For Robust Speech Processing and Applications
In this work, we study the application of wavelet analysis for robust speech processing. Reliable time-scale features (TS) which characterize the relevant phonetic classes such as voiced (V), unvoiced (UV), silence (S), mixed-excitation, and stop sounds are extracted. By training neural and Bayesian networks, the classification rates provided by only 7 TS features are mostly similar to the ones obtained by 13 MFCC features. The TS features are further enhanced to design a reliable and low-complexity V/UV/S classifier. Quantile filtering and slope tracking are used for deriving adaptive thresholds. A robust voice activity detector is then built and used as a pre-processing stage to improve the performance of a speaker verification system. Based on wavelet shrinkage, a statistical wavelet filtering (SWF) method is designed for speech enhancement. Non-stationary and colored noise is handled by employing quantile filtering and time-frequency adaptive ...
Pham, Van Tuan — Graz University of Technology
The interest for the intelligent vehicle field has been increased during the last years, must probably due to an important number of road accidents. Many accidents could be avoided if a device attached to the vehicle would assist the driver with some warnings when dangerous situations are about to appear. In recent years, leading car developers have recorded significant efforts and support research works regarding the intelligent vehicle field where they propose solutions for the existing problems, especially in the vision domain. Road detection and following, pedestrian or vehicle detection, recognition and tracking, night vision, among others are examples of applications which have been developed and improved recently. Still, a lot of challenges and unsolved problems remain in the intelligent vehicle domain. Our purpose in this thesis is to design an Obstacle Recognition system for improving the road security by ...
Apatean, Anca Ioana — Institut National des Sciences Appliquées de Rouen
Magnetic Resonance Spectroscopy (MRS) is a technique which has evolved rapidly over the past 15 years. It has been used specifically in the context of brain tumours and has shown very encouraging correlations between brain tumour type and spectral pattern. In vivo MRS enables the quantification of metabolite concentrations non-invasively, thereby avoiding serious risks to brain damage. While Magnetic Resonance Imaging (MRI) is commonly used for identifying the location and size of brain tumours, MRS complements it with the potential to provide detailed chemical information about metabolites present in the brain tissue and enable an early detection of abnormality. However, the introduction of MRS in clinical medicine has been difficult due to problems associated with the acquisition of in vivo MRS signals from living tissues at low magnetic fields acceptable for patients. The low signal-to-noise ratio makes accurate analysis of ...
Lukas, Lukas — Katholieke Universiteit Leuven
The subject of the thesis is the emergence and analysis of visual texture microstructure for efficient modeling, descriptive feature extraction and image representation. Main objectives are the problems of image texture modeling and analysis in Computer Vision systems, with emphasis on the subproblems of texture detection, segmentation and separation in images. Advanced modeling and analysis methods are developed in parallel directions: a) Multiband models of narrowband components and spatial modulations, b) Energy methods for texture feature extraction, c) Variational techniques of image decomposition and texture separation. The proposed methods are applied on a database of digitized soilsection images to quantify and evaluate the biological quality of soils and in different types and collections of natural images. The developed model is the common ground to approach texture in its different forms and applications. In total, a complete system for texture processing ...
Evangelopoulos, Georgios — National Technical University of Athens
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia encountered in clinical practice, and one of the main causes of ictus and strokes. Despite the advances in the comprehension of its mechanisms, its thorough characterization and the quantification of its effects on the human heart are still an open issue. In particular, the choice of the most appropriate therapy is frequently a hard task. Radiofrequency catheter ablation (CA) is becoming one of the most popular solutions for the treatment of the disease. Yet, very little is known about its impact on heart substrate during AF, thus leading to an inaccurate selection of positive responders to therapy and a low success rate; hence, the need for advanced signal processing tools able to quantify AF impact on heart substrate and assess the effectiveness of the CA therapy in an objective and ...
Marianna Meo — Université Nice Sophia Antipolis
Ultra low-power biomedical signal processing: an analog wavelet filter approach for pacemakers
The purpose of this thesis is to describe novel signal processing methodologies and analog integrated circuit techniques for low-power biomedical systems. Physiological signals, such as the electrocardiogram (ECG), the electroencephalogram (EEG) and the electromyogram (EMG) are mostly non-stationary. The main difficulty in dealing with biomedical signal processing is that the information of interest is often a combination of features that are well localized temporally (e.g., spikes) and others that are more diffuse (e.g., small oscillations). This requires the use of analysis methods sufficiently versatile to handle events that can be at opposite extremes in terms of their time-frequency localization. Wavelet Transform (WT) has been extensively used in biomedical signal processing, mainly due to the versatility of the wavelet tools. The WT has been shown to be a very efficient tool for local analysis of nonstationary and fast transient signals due ...
Haddad, Sandro Augusto Pavlík — Delft University of Technology
Offline Signature Verification with User-Based and Global Classifiers of Local Features
Signature verification deals with the problem of identifying forged signatures of a user from his/her genuine signatures. The difficulty lies in identifying allowed variations in a user’s signatures, in the presence of high intra-class and low inter-class variability (the forgeries may be more similar to a user’s genuine signature, compared to his/her other genuine signatures). The problem can be seen as a non-rigid object matching where classes are very similar. In the field of biometrics, signature is considered a behavioral biometric and the problem possesses further difficulties compared to other modalities (e.g. fingerprints) due to the added issue of skilled forgeries. A novel offline (image-based) signature verification system is proposed in this thesis. In order to capture the signature’s stable parts and alleviate the difficulty of global matching, local features (histogram of oriented gradients, local binary patterns) are used, based ...
Yılmaz, Mustafa Berkay — Sabancı University
In this thesis, the power of Machine Learning (ML) algorithms is combined with brain connectivity patterns, using Magnetic Resonance Imaging (MRI), for classification and prediction of Multiple Sclerosis (MS). White Matter (WM) as well as Grey Matter (GM) graphs are studied as connectome data types. The thesis addresses three main research objectives. The first objective aims to generate realistic brain connectomes data for improving the classification of MS clinical profiles in cases of data scarcity and class imbalance. To solve the problem of limited and imbalanced data, a Generative Adversarial Network (GAN) was developed for the generation of realistic and biologically meaningful connec- tomes. This network achieved a 10% better MS classification performance compared to classical approaches. As second research objective, we aim to improve classification of MS clinical profiles us- ing morphological features only extracted from GM brain tissue. ...
Barile, Berardino — KU Leuven
Domain-informed signal processing with application to analysis of human brain functional MRI data
Standard signal processing techniques are implicitly based on the assumption that the signal lies on a regular, homogeneous domain. In practice, however, many signals lie on an irregular or inhomogeneous domain. An application area where data are naturally defined on an irregular or inhomogeneous domain is human brain neuroimaging. The goal in neuroimaging is to map the structure and function of the brain using imaging techniques. In particular, functional magnetic resonance imaging (fMRI) is a technique that is conventionally used in non-invasive probing of human brain function. This doctoral dissertation deals with the development of signal processing schemes that adapt to the domain of the signal. It consists of four papers that in different ways deal with exploiting knowledge of the signal domain to enhance the processing of signals. In each paper, special focus is given to the analysis of ...
Behjat, Hamid — Lund University
Hierarchical Lattice Vector Quantisation Of Wavelet Transformed Images
The objectives of the research were to develop embedded and non-embedded lossy coding algorithms for images based on lattice vector quantisation and the discrete wavelet transform. We also wanted to develop context-based entropy coding methods (as opposed to simple first order entropy coding). The main objectives can therefore be summarised as follows: (1) To develop algorithms for intra and inter-band formed vectors (vectors with coefficients from the same sub-band or across different sub-bands) which compare favourably with current high performance wavelet based coders both in terms of rate/distortion performance of the decoded image and also subjective quality; (2) To develop new context-based coding methods (based on vector quantisation). The alternative algorithms we have developed fall into two categories: (a) Entropy coded and Binary uncoded successive approximation lattice vector quantisation (SALVQ- E and SA-LVQ-B) based on quantising vectors formed intra-band. This ...
Vij, Madhav — University of Cambridge, Department of Engineering, Signal Processing Group
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.