Video person recognition strategies using head motion and facial appearance

In this doctoral dissertation, we principally explore the use of the temporal information available in video sequences for person and gender recognition; in particular, we focus on the analysis of head and facial motion, and their potential application as biometric identifiers. We also investigate how to exploit as much video information as possible for the automatic recognition; more precisely, we examine the possibility of integrating the head and mouth motion information with facial appearance into a multimodal biometric system, and we study the extraction of novel spatio-temporal facial features for recognition. We initially present a person recognition system that exploits the unconstrained head motion information, extracted by tracking a few facial landmarks in the image plane. In particular, we detail how each video sequence is firstly pre-processed by semiautomatically detecting the face, and then automatically tracking the facial landmarks over ...

Matta, Federico — Eurécom / Multimedia communications


Non-rigid Registration-based Data-driven 3D Facial Action Unit Detection

Automated analysis of facial expressions has been an active area of study due to its potential applications not only for intelligent human-computer interfaces but also for human facial behavior research. To advance automatic expression analysis, this thesis proposes and empirically proves two hypotheses: (i) 3D face data is a better data modality than conventional 2D camera images, not only for being much less disturbed by illumination and head pose effects but also for capturing true facial surface information. (ii) It is possible to perform detailed face registration without resorting to any face modeling. This means that data-driven methods in automatic expression analysis can compensate for the confounding effects like pose and physiognomy differences, and can process facial features more effectively, without suffering the drawbacks of model-driven analysis. Our study is based upon Facial Action Coding System (FACS) as this paradigm ...

Savran, Arman — Bogazici University


Automatic Analysis of Head and Facial Gestures in Video Streams

Automatic analysis of head gestures and facial expressions is a challenging research area and it has significant applications for intelligent human-computer interfaces. An important task is the automatic classification of non-verbal messages composed of facial signals where both facial expressions and head rotations are observed. This is a challenging task, because there is no definite grammar or code-book for mapping the non-verbal facial signals into a corresponding mental state. Furthermore, non-verbal facial signals and the observed emotions have dependency on personality, society, state of the mood and also the context in which they are displayed or observed. This thesis mainly addresses the three desired tasks for an effective visual information based automatic face and head gesture (FHG) analyzer. First we develop a fully automatic, robust and accurate 17-point facial landmark localizer based on local appearance information and structural information of ...

Cinar Akakin, Hatice — Bogazici University


Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors

This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...

Gil-Martín, Manuel — Universidad Politécnica de Madrid


Emotion assessment for affective computing based on brain and peripheral signals

Current Human-Machine Interfaces (HMI) lack of “emotional intelligence”, i.e. they are not able to identify human emotional states and take this information into account to decide on the proper actions to execute. The goal of affective computing is to fill this lack by detecting emotional cues occurring during Human-Computer Interaction (HCI) and synthesizing emotional responses. In the last decades, most of the studies on emotion assessment have focused on the analysis of facial expressions and speech to determine the emotional state of a person. Physiological activity also includes emotional information that can be used for emotion assessment but has received less attention despite of its advantages (for instance it can be less easily faked than facial expressions). This thesis reports on the use of two types of physiological activities to assess emotions in the context of affective computing: the activity ...

Chanel, Guillaume — University of Geneva


Detection of epileptic seizures based on video and accelerometer recordings

Epilepsy is one of the most common neurological diseases, especially in children. And although the majority of patients can be treated through medication or surgery (70%-75%), a significant group of patients cannot be treated. For this latter group of patients it is advisable to follow the evolution of the disease. This can be done through a long-term automatic monitoring, which gives an objective measure of the number of seizures that the patient has, for example during the night. On the other hand, there is a reduced social control overnight and the parents or caregivers can miss some seizures. In severe seizures, it is sometimes necessary, however, to avoid dangerous situations during or after the seizure (e.g. the danger of suffocation caused by vomiting or a position that obstructs breathing, or the risk of injury during violent movements), and to comfort ...

Cuppens, Kris — Katholieke Universiteit Leuven


Machine Learning-Aided Monitoring and Prediction of Respiratory and Neurodegenerative Diseases Using Wearables

This thesis focuses on wearables for health status monitoring, covering applications aimed at emergency solutions to the COVID-19 pandemic and aging society. The methods of ambient assisted living (AAL) are presented for the neurodegenerative disease Parkinson’s disease (PD), facilitating ’aging in place’ thanks to machine learning and around wearables - solutions of mHealth. Furthermore, the approaches using machine learning and wearables are discussed for early-stage COVID-19 detection, with encouraging accuracy. Firstly, a publicly available dataset containing COVID-19, influenza, and healthy control data was reused for research purposes. The solution presented in this thesis is considering the classification problem and outperformed the state-of-the-art methods, whereas the original paper introduced just anomaly detection and not shown the specificity of the created models. The proposed model in the thesis for early detection of COVID-19 achieved 78 % for the k-NN classifier. Moreover, a ...

Justyna Skibińska — Brno University of Technology & Tampere University


Predictive modelling and deep learning for quantifying human health

Machine learning and deep learning techniques have emerged as powerful tools for addressing complex challenges across diverse domains. These methodologies are powerful because they extract patterns and insights from large and complex datasets, automate decision-making processes, and continuously improve over time. They enable us to observe and quantify patterns in data that a normal human would not be able to capture, leading to deeper insights and more accurate predictions. This dissertation presents two research papers that leverage these methodologies to tackle distinct yet interconnected problems in neuroimaging and computer vision for the quantification of human health. The first investigation, "Age prediction using resting-state functional MRI," addresses the challenge of understanding brain aging. By employing the Least Absolute Shrinkage and Selection Operator (LASSO) on resting-state functional MRI (rsfMRI) data, we identify the most predictive correlations related to brain age. Our study, ...

Chang Jose — National Cheng Kung University


Visual Analysis of Faces with Application in Biometrics, Forensics and Health Informatics

Computer vision-based analysis of human facial video provides information regarding to expression, diseases symptoms, and physiological parameters such as heartbeat rate, blood pressure and respiratory rate. It also provides a convenient source of heartbeat signal to be used in biometrics and forensics. This thesis is a collection of works done in five themes in the realm of computer vision-based facial image analysis: Monitoring elderly patients at private homes, Face quality assessment, Measurement of physiological parameters, Contact-free heartbeat biometrics, and Decision support system for healthcare. The work related to monitoring elderly patients at private homes includes a detailed survey and review of the monitoring technologies relevant to older patients living at home by discussing previous reviews and relevant taxonomies, different scenarios for home monitoring solutions for older patients, sensing and data acquisition techniques, data processing and analysis techniques, available datasets for ...

Haque, Mohammad Ahsanul — Aalborg Univeristy


Monitoring Infants by Automatic Video Processing

This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 2‰ live births, 11‰ for preterm ...

Cattani Luca — University of Parma (Italy)


Structured and Sequential Representations For Human Action Recognition

Human action recognition problem is one of the most challenging problems in the computer vision domain, and plays an emerging role in various fields of study. In this thesis, we investigate structured and sequential representations of spatio-temporal data for recognizing human actions and for measuring action performance quality. In video sequences, we characterize each action with a graphical structure of its spatio-temporal interest points and each such interest point is qualified by its cuboid descriptors. In the case of depth data, an action is represented by the sequence of skeleton joints. Given such descriptors, we solve the human action recognition problem through a hyper-graph matching formulation. As is known, hyper-graph matching problem is NP-complete. We simplify the problem in two stages to enable a fast solution: In the first stage, we take into consideration the physical constraints such as time ...

Celiktutan, Oya — Bogazici University


Motion Analysis and Modeling for Activity Recognition and 3-D Animation based on Geometrical and Video Processing Algorithms

The analysis of audiovisual data aims at extracting high level information, equivalent with the one(s) that can be extracted by a human. It is considered as a fundamental, unsolved (in its general form) problem. Even though the inverse problem, the audiovisual (sound and animation) synthesis, is judged easier than the previous, it remains an unsolved problem. The systematic research on these problems yields solutions that constitute the basis for a great number of continuously developing applications. In this thesis, we examine the two aforementioned fundamental problems. We propose algorithms and models of analysis and synthesis of articulated motion and undulatory (snake) locomotion, using data from video sequences. The goal of this research is the multilevel information extraction from video, like object tracking and activity recognition, and the 3-D animation synthesis in virtual environments based on the results of analysis. An ...

Panagiotakis, Costas — University of Crete


Acoustic Event Detection: Feature, Evaluation and Dataset Design

It takes more time to think of a silent scene, action or event than finding one that emanates sound. Not only speaking or playing music but almost everything that happens is accompanied with or results in one or more sounds mixed together. This makes acoustic event detection (AED) one of the most researched topics in audio signal processing nowadays and it will probably not see a decline anywhere in the near future. This is due to the thirst for understanding and digitally abstracting more and more events in life via the enormous amount of recorded audio through thousands of applications in our daily routine. But it is also a result of two intrinsic properties of audio: it doesn’t need a direct sight to be perceived and is less intrusive to record when compared to image or video. Many applications such ...

Mina Mounir — KU Leuven, ESAT STADIUS


Vision-based human activities recognition in supervised or assisted environment

Human Activity Recognition HAR has been a hot research topic in the last decade due to its wide range of applications. Indeed, it has been the basis for implementa- tion of many computer vision applications, home security, video surveillance, and human-computer interaction. We intend by HAR, tools, and systems allowing to detect and recognize actions performed by individuals. With the considerable progress made in sensing technologies, HAR systems shifted from wearable and ambient-based to vision-based. This motivated the researchers to propose a large mass of vision-based solutions. From another perspective, HAR plays an impor- tant role in the health care sector and gets involved in the construction of fall detection systems and many smart home-related systems. Fall detection FD con- sists in identifying the occurrence of falls among other daily life activities. This is essential because falling is one of ...

Beddiar Djamila Romaissa — Université De Larbi Ben M’hidi Oum EL Bouaghi, Algeria


Facial features segmentation, analysis and recognition of facial expressions by the Transferable Belief Model

Facial features segmentation, analysis and recognition of facial expressions by the Transferable Belief Model The aim of this work is the analysis and the classification of facial expressions. Experiments in psychology show that human is able to recognize the emotions based on the visualization of the temporal evolution of some characteristic fiducial points. Thus we firstly propose an automatic system for the extraction of the permanent facial features (eyes, eyebrows and lips). In this work we are interested in the problem of the segmentation of the eyes and the eyebrows. The segmentation of lips contours is based on a previous work developed in the laboratory. The proposed algorithm for eyes and eyebrows contours segmentation consists of three steps: firstly, the definition of parametric models to fit as accurate as possible the contour of each feature; then, a whole set of ...

Hammal, Zakia — GIPSA-lab/DIS

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.