Human-Centered Content-Based Image Retrieval (2005)
Video Sequence Analysis for Content Description, Summarization and Content-Based Retrieval
The main research area of this Ph.D. thesis is video sequence processing and analysis for description and indexing of visual content. Its objective is to contribute in the development of a computational system with the capabilities of object-based segmentation of audiovisual material, automatic content description, summarization for preview and browsing, as well as content-based retrieval. The thesis consists of four parts. The first introduces video sequence analysis, segmentation and object extraction based on color, motion, and depth field. A fusion technique is proposed that combines individual cue segmentations and allows for reliable identification of semantic objects. The second part refers to automatic description and annotation of the visual content by means of feature vectors, summarization, implemented by optimal selection of a limited set of key frames and shots, and content-based search and retrieval. In the third part, the problem of ...
Avrithis, Yannis — National Technical University of Athens
Content-based search and browsing in semantic multimedia retrieval
Growth in storage capacity has led to large digital video repositories and complicated the discovery of specific information without the laborious manual annotation of data. The research focuses on creating a retrieval system that is ultimately independent of manual work. To retrieve relevant content, the semantic gap between the searcher's information need and the content data has to be overcome using content-based technology. Semantic gap constitutes of two distinct elements: the ambiguity of the true information need and the equivocalness of digital video data. The research problem of this thesis is: what computational content-based models for retrieval increase the effectiveness of the semantic retrieval of digital video? The hypothesis is that semantic search performance can be improved using pattern recognition, data abstraction and clustering techniques jointly with human interaction through manually created queries and visual browsing. The results of this ...
Rautiainen, Mika — University of Oulou
Video Content Analysis by Active Learning
Advances in compression techniques, decreasing cost of storage, and high-speed transmission have facilitated the way videos are created, stored and distributed. As a consequence, videos are now being used in many applications areas. The increase in the amount of video data deployed and used in today's applications reveals not only the importance as multimedia data type, but also led to the requirement of efficient management of video data. This management paved the way for new research areas, such as indexing and retrieval of video with respect to their spatio-temporal, visual and semantic contents. This thesis presents work towards a unified framework for semi-automated video indexing and interactive retrieval. To create an efficient index, a set of representative key frames are selected which capture and encapsulate the entire video content. This is achieved by, firstly, segmenting the video into its constituent ...
Camara Chavez, Guillermo — Federal University of Minas Gerais
Extended Bag-of-Words Formalism for Image Classification
Visual information, in the form of digital images and videos, has become so omnipresent in computer databases and repositories, that it can no longer be considered a “second class citizen”, eclipsed by textual information. In that scenario, image classification has become a critical task. In particular, the pursuit of automatic identification of complex semantical concepts represented in images, such as scenes or objects, has motivated researchers in areas as diverse as Information Retrieval, Computer Vision, Image Processing and Artificial Intelligence. Nevertheless, in contrast to text documents, whose words carry semantic, images consist of pixels that have no semanticinformation by themselves, making the task very challenging. In this dissertation, we have addressed the problem of representing images based on their visual information. Our aim is content-based concept detection in images and videos, with a novel representation that enriches the Bag-of-Words model. ...
Avila, Sandra Eliza Fontes — Universidade Federal de Minas Gerais, Université Pierre et Marie Curie
Fire Detection Algorithms Using Multimodal Signal and Image Analysis
Dynamic textures are common in natural scenes. Examples of dynamic textures in video include fire, smoke, clouds, volatile organic compound (VOC) plumes in infra-red (IR) videos, trees in the wind, sea and ocean waves, etc. Researchers extensively studied 2-D textures and related problems in the fields of image processing and computer vision. On the other hand, there is very little research on dynamic texture detection in video. In this dissertation, signal and image processing methods developed for detection of a specific set of dynamic textures are presented. Signal and image processing methods are developed for the detection of flames and smoke in open and large spaces with a range of up to $30$m to the camera in visible-range (IR) video. Smoke is semi-transparent at the early stages of fire. Edges present in image frames with smoke start loosing their sharpness ...
Toreyin, Behcet Ugur — Bilkent University
Affective Signal Processing (ASP): Unraveling the mystery of emotions
Slowly computers are being dressed and becoming huggable and tangible. They are being personalized and are expected to understand more of their users' feelings, emotions, and moods: This we refer to as affective computing. The work and experiences from 50+ publications on affective computing is collected and reported in one concise monograph. A brief introduction on emotion theory and affective computing is given and its relevance for computer science (i.e., Human-Computer Interaction, Artificial Intelligence (AI), and Health Informatics) is denoted. Next, a closed model for affective computing is introduced and reviews of both biosignals and affective computing are presented. The conclusion of all of this is that affective computing lacks standards. Affective computing's key dimensions need to be identified and studied to bring the field the progress it needs. A series of studies is presented that explore baseline-free affective computing, ...
van den Broek, Egon L. — University of Twente
Functional Neuroimaging Data Characterisation Via Tensor Representations
The growing interest in neuroimaging technologies generates a massive amount of biomedical data that exhibit high dimensionality. Tensor-based analysis of brain imaging data has by now been recognized as an effective approach exploiting its inherent multi-way nature. In particular, the advantages of tensorial over matrix-based methods have previously been demonstrated in the context of functional magnetic resonance imaging (fMRI) source localization; the identification of the regions of the brain which are activated at specific time instances. However, such methods can also become ineffective in realistic challenging scenarios, involving, e.g., strong noise and/or significant overlap among the activated regions. Moreover, they commonly rely on the assumption of an underlying multilinear model generating the data. In the first part of this thesis, we aimed at investigating the possible gains from exploiting the 3-dimensional nature of the brain images, through a higher-order tensorization ...
Christos Chatzichristos — National and Kapodistrian University of Athens
Vision models and quality metrics for image processing applications
Optimizing the performance of digital imaging systems with respect to the capture, display, storage and transmission of visual information represents one of the biggest challenges in the field of image and video processing. Taking into account the way humans perceive visual information can be greatly beneficial for this task. To achieve this, it is necessary to understand and model the human visual system, which is also the principal goal of this thesis. Computational models for different aspects of the visual system are developed, which can be used in a wide variety of image and video processing applications. The proposed models and metrics are shown to be consistent with human perception. The focus of this work is visual quality assessment. A perceptual distortion metric (PDM) for the evaluation of video quality is presented. It is based on a model of the ...
Winkler, Stefan — Swiss Federal Institute of Technology
Facial Soft Biometrics: Methods, Applications and Solutions
This dissertation studies soft biometrics traits, their applicability in different security and commercial scenarios, as well as related usability aspects. We place the emphasis on human facial soft biometric traits which constitute the set of physical, adhered or behavioral human characteristics that can partially differentiate, classify and identify humans. Such traits, which include characteristics like age, gender, skin and eye color, the presence of glasses, moustache or beard, inherit several advantages such as ease of acquisition, as well as a natural compatibility with how humans perceive their surroundings. Specifically, soft biometric traits are compatible with the human process of classifying and recalling our environment, a process which involves constructions of hierarchical structures of different refined traits. This thesis explores these traits, and their application in soft biometric systems (SBSs), and specifically focuses on how such systems can achieve different goals ...
Dantcheva, Antitza — EURECOM / Telecom ParisTech
Algorithmic Analysis of Complex Audio Scenes
In this thesis, we examine the problem of algorithmic analysis of complex audio scenes with a special emphasis on natural audio scenes. One of the driving goals behind this work is to develop tools for monitoring the presence of animals in areas of interest based on their vocalisations. This task, which often occurs in the evaluation of nature conservation measures, leads to a number of subproblems in audio scene analysis. In order to develop and evaluate pattern recognition algorithms for animal sounds, a representative collection of such sounds is necessary. Building such a collection is beyond the scope of a single researcher and we therefore use data from the Animal Sound Archive of the Humboldt University of Berlin. Although a large portion of well annotated recordings from this archive has been available in digital form, little infrastructure for searching and ...
Bardeli, Rolf — University of Bonn
Low Complexity Image Recognition Algorithms for Handheld Devices
Content Based Image Retrieval (CBIR) has gained a lot of interest over the last two decades. The need to search and retrieve images from databases, based on information (“features”) extracted from the image itself, is becoming increasingly important. CBIR can be useful for handheld image recognition devices in which the image to be recognized is acquired with a camera, and thus there is no additional metadata associated to it. However, most CBIR systems require large computations, preventing their use in handheld devices. In this PhD work, we have developed low-complexity algorithms for content based image retrieval in handheld devices for camera acquired images. Two novel algorithms, ‘Color Density Circular Crop’ (CDCC) and ‘DCT-Phase Match’ (DCTPM), to perform image retrieval along with a two-stage image retrieval algorithm that combines CDCC and DCTPM, to achieve the low complexity required in handheld devices ...
Ayyalasomayajula, Pradyumna — EPFL
On-board Processing for an Infrared Observatory
During the past two decades, image compression has developed from a mostly academic Rate-Distortion (R-D) field, into a highly commercial business. Various lossless and lossy image coding techniques have been developed. This thesis represents an interdisciplinary work between the field of astronomy and digital image processing and brings new aspects into both of the fields. In fact, image compression had its beginning in an American space program for efficient data storage. The goal of this research work is to recognize and develop new methods for space observatories and software tools to incorporate compression in space astronomy standards. While the astronomers benefit from new objective processing and analysis methods and improved efficiency and quality, for technicians a new field of application and research is opened. For validation of the processing results, the case of InfraRed (IR) astronomy has been specifically analyzed. ...
Belbachir, Ahmed Nabil — Vienna University of Technology
Density-based shape descriptors and similarity learning for 3D object retrieval
Next generation search engines will enable query formulations, other than text, relying on visual information encoded in terms of images and shapes. The 3D search technology, in particular, targets specialized application domains ranging from computer aided-design and manufacturing to cultural heritage archival and presentation. Content-based retrieval research aims at developing search engines that would allow users to perform a query by similarity of content. This thesis deals with two fundamentals problems in content-based 3D object retrieval: (1) How to describe a 3D shape to obtain a reliable representative for the subsequent task of similarity search? (2) How to supervise the search process to learn inter-shape similarities for more effective and semantic retrieval? Concerning the first problem, we develop a novel 3D shape description scheme based on probability density of multivariate local surface features. We constructively obtain local characterizations of 3D ...
Akgul, Ceyhun Burak — Bogazici University and Telecom ParisTech
Spatiotonal Adaptivity in Super-Resolution of under-sampled Image Sequences
This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4), super-resolution restoration (chapter 5), and super-resolution synthesis (chapter 6). Chapter 2 derives the Cramer-Rao lower bound of image registration and shows that iterative gradient-based estimators achieve this performance limit. Chapter 3 presents an algorithm for image fusion of irregularly sampled and uncertain data using robust normalized convolution. The size and shape of the fusion kernel is adapted to local curvilinear structures in the image. Each data sample is assigned an intensity-related certainty value to limit the influence of outliers. Chapter 4 presents two fast implementations of the signal-adaptive bilateral filter. The xy-separable implementation filters ...
Pham, Tuan Q. — Delft University of Technology
Tensor-based blind source separation for structured EEG-fMRI data fusion
A complex physical system like the human brain can only be comprehended by the use of a combination of various medical imaging techniques, each of which shed light on only a specific aspect of the neural processes that take place beneath the skull. Electroencephalography (EEG) and functional magnetic resonance (fMRI) are two such modalities, which enable the study of brain (dys)function. While the EEG is measured with a limited set of scalp electrodes which record rapid electrical changes resulting from neural activity, fMRI offers a superior spatial resolution at the expense of only picking up slow fluctuations of oxygen concentration that takes place near active brain cells. Hence, combining these very complementary modalities is an appealing, but complicated task due to their heterogeneous nature. In this thesis, we devise advanced signal processing techniques which integrate the multimodal data stemming from ...
Van Eyndhoven, Simon — KU Leuven
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.