Planar 3D Scene Representations for Depth Compression

The recent invasion of stereoscopic 3D television technologies is expected to be followed by autostereoscopic and holographic technologies. Glasses-free multiple stereoscopic pair displaying capabilities of these technologies will advance the 3D experience. The prospective 3D format to create the multiple views for such displays is Multiview Video plus Depth (MVD) format based on the Depth Image Based Rendering (DIBR) techniques. The depth modality of the MVD format is an active research area whose main objective is to develop DIBR friendly efficient compression methods. As a part this research, the thesis proposes novel 3D planar-based depth representations. The planar approximation of the stereo depth images is formulated as an energy-based co-segmentation problem by a Markov Random Field model. The energy terms of this problem are designed to mimic the rate-distortion tradeoff for a depth compression application. A heuristic algorithm is developed ...

Özkalaycı, Burak Oğuz — Middle East Technical University


Unsupervised and semi-supervised Non-negative Matrix Factorization methods for brain tumor segmentation using multi-parametric MRI data

Gliomas represent about 80% of all malignant primary brain tumors. Despite recent advancements in glioma research, patient outcome remains poor. The 5 year survival rate of the most common and most malignant subtype, i.e. glioblastoma, is about 5%. Magnetic resonance imaging (MRI) has become the imaging modality of choice in the management of brain tumor patients. Conventional MRI (cMRI) provides excellent soft tissue contrast without exposing the patient to potentially harmful ionizing radiation. Over the past decade, advanced MRI modalities, such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have gained interest in the clinical field, and their added value regarding brain tumor diagnosis, treatment planning and follow-up has been recognized. Tumor segmentation involves the imaging-based delineation of a tumor and its subcompartments. In gliomas, segmentation plays an important role in treatment planning as well ...

Sauwen, Nicolas — KU Leuven


Fire Detection Algorithms Using Multimodal Signal and Image Analysis

Dynamic textures are common in natural scenes. Examples of dynamic textures in video include fire, smoke, clouds, volatile organic compound (VOC) plumes in infra-red (IR) videos, trees in the wind, sea and ocean waves, etc. Researchers extensively studied 2-D textures and related problems in the fields of image processing and computer vision. On the other hand, there is very little research on dynamic texture detection in video. In this dissertation, signal and image processing methods developed for detection of a specific set of dynamic textures are presented. Signal and image processing methods are developed for the detection of flames and smoke in open and large spaces with a range of up to $30$m to the camera in visible-range (IR) video. Smoke is semi-transparent at the early stages of fire. Edges present in image frames with smoke start loosing their sharpness ...

Toreyin, Behcet Ugur — Bilkent University


Radial Basis Function Network Robust Learning Algorithms in Computer Vision Applications

This thesis introduces new learning algorithms for Radial Basis Function (RBF) networks. RBF networks is a feed-forward two-layer neural network used for functional approximation or pattern classification applications. The proposed training algorithms are based on robust statistics. Their theoretical performance has been assessed and compared with that of classical algorithms for training RBF networks. The applications of RBF networks described in this thesis consist of simultaneously modeling moving object segmentation and optical flow estimation in image sequences and 3-D image modeling and segmentation. A Bayesian classifier model is used for the representation of the image sequence and 3-D images. This employs an energy based description of the probability functions involved. The energy functions are represented by RBF networks whose inputs are various features drawn from the images and whose outputs are objects. The hidden units embed kernel functions. Each kernel ...

Bors, Adrian G. — Aristotle University of Thessaloniki


Regularized estimation of fractal attributes by convex minimization for texture segmentation: joint variational formulations, fast proximal algorithms and unsupervised selection of regularization para

In this doctoral thesis several scale-free texture segmentation procedures based on two fractal attributes, the Hölder exponent, measuring the local regularity of a texture, and local variance, are proposed.A piecewise homogeneous fractal texture model is built, along with a synthesis procedure, providing images composed of the aggregation of fractal texture patches with known attributes and segmentation. This synthesis procedure is used to evaluate the proposed methods performance.A first method, based on the Total Variation regularization of a noisy estimate of local regularity, is illustrated and refined thanks to a post-processing step consisting in an iterative thresholding and resulting in a segmentation.After evidencing the limitations of this first approach, deux segmentation methods, with either "free" or "co-located" contours, are built, taking in account jointly the local regularity and the local variance.These two procedures are formulated as convex nonsmooth functional minimization problems.We ...

Pascal, Barbara — École Normale Supérieure de Lyon


An Attention Model and its Application in Man-Made Scene Interpretation

The ultimate aim of research into computer vision is designing a system which interprets its surrounding environment in a similar way the human can do effortlessly. However, the state of technology is far from achieving such a goal. In this thesis different components of a computer vision system that are designed for the task of interpreting man-made scenes, in particular images of buildings, are described. The flow of information in the proposed system is bottom-up i.e., the image is first segmented into its meaningful components and subsequently the regions are labelled using a contextual classifier. Starting from simple observations concerning the human vision system and the gestalt laws of human perception, like the law of 'good (simple) shape' and 'perceptual grouping', a blob detector is developed, that identifies components in a 2D image. These components are convex regions of interest, ...

Jahangiri, Mohammad — Imperial College London


Bayesian Approaches in Image Source Seperation

In this thesis, a general solution to the component separation problem in images is introduced. Unlike most existing works, the spatial dependencies of images are modelled in the separation process with the use of Markov random fields (MRFs). In the MRFs model, Cauchy density is used for the gradient images. We provide a general Bayesian framework for the estimation of the parameters of this model. Due to the intractability of the problem we resort to numerical solutions for the joint maximization of the a posteriori distribution of the sources, the mixing matrix and the noise variances. For numerical solution, four different methods are proposed. In first method, the difficulty of working analytically with general Gibbs distributions of MRF is overcome by using an approximate density. In this approach, the Gibbs distribution is modelled by the product of directional Gaussians. The ...

Kayabol, Koray — Istanbul University


Dealing with Variability Factors and Its Application to Biometrics at a Distance

This Thesis is focused on dealing with the variability factors in biometric recognition and applications of biometrics at a distance. In particular, this PhD Thesis explores the problem of variability factors assessment and how to deal with them by the incorporation of soft biometrics information in order to improve person recognition systems working at a distance. The proposed methods supported by experimental results show the benefits of adapting the system considering the variability of the sample at hand. Although being relatively young compared to other mature and long-used security technologies, biometrics have emerged in the last decade as a pushing alternative for applications where automatic recognition of people is needed. Certainly, biometrics are very attractive and useful for video surveillance systems at a distance, widely distributed in our lifes, and for the final user: forget about PINs and passwords, you ...

Tome, Pedro — Universidad Autónoma de Madrid


Tissue Characterisation from Intravascular Ultrasound using Texture Analysis

Intravascular ultrasound has, over the past decade, significantly changed the clinical diagnosis and therapeutic strategy of coronary and vascular disease assessment, as it not only allows visualisation of the vessel lumen, but gives a unique view of the pathophysiologic structure of the artery wall. This information is currently unavailable from the universally accepted instrument for artery assessment, angiography, which has on several occasions had its diagnostic accuracy questioned. With intravascular ultrasound, there is the potential to categorise diseased arterial tissue belonging to distinct pathological groups which can ultimately aid in the understanding of individual lesions as well as making a significant contribution to treatment choice and management of cardiac patients. The high resolution image information offered by intravascular ultrasound provides excellent crosssectional views of coronary artery disease at the level of the disease process itself. This information can be used ...

Nailon, William Henry — University Of Edinburgh


Signal and Image Processing Techniques for Image-Based Photometry With Application to Diabetes Care

This PhD thesis addresses the problem of measuring blood glucose from a photometric measurement setup that requires blood samples in the nano litre-range, which is several orders of magnitude less than the state of the art. The chemical reaction between the blood sample and the reagent in this setup is observed by a camera over time. Notably, the presented framework can be generalised to any image-based photometric measurement scheme in the context of modern biosensors. In this thesis a framework is developed to measure the glucose concentration from the raw images obtained by the camera. Initially, a pre-processing scheme is presented to enhance the raw images. Moreover, a reaction onset detection algorithm is developed. This eliminates unnecessary computation during the constant phase of the chemical reaction. To detect faulty glucose measurements, methods of texture analysis are identified and employed in ...

Demitri, Nevine — Technische Universität Darmstadt


Signal Separation

The problem of signal separation is a very broad and fundamental one. A powerful paradigm within which signal separation can be achieved is the assumption that the signals/sources are statistically independent of one another. This is known as Independent Component Analysis (ICA). In this thesis, the theoretical aspects and derivation of ICA are examined, from which disparate approaches to signal separation are drawn together in a unifying framework. This is followed by a review of signal separation techniques based on ICA. Second order statistics based output decorrelation methods are employed to try to solve the challenging problem of separating convolutively mixed signals, in the context of mainly audio source separation and the Cocktail Party Problem. Various optimisation techniques are devised to implement second order signal separation of both artificially mixed signals and real mixtures. A study of the advantages and ...

Ahmed, Alijah — University of Cambridge


Video Sequence Analysis for Content Description, Summarization and Content-Based Retrieval

The main research area of this Ph.D. thesis is video sequence processing and analysis for description and indexing of visual content. Its objective is to contribute in the development of a computational system with the capabilities of object-based segmentation of audiovisual material, automatic content description, summarization for preview and browsing, as well as content-based retrieval. The thesis consists of four parts. The first introduces video sequence analysis, segmentation and object extraction based on color, motion, and depth field. A fusion technique is proposed that combines individual cue segmentations and allows for reliable identification of semantic objects. The second part refers to automatic description and annotation of the visual content by means of feature vectors, summarization, implemented by optimal selection of a limited set of key frames and shots, and content-based search and retrieval. In the third part, the problem of ...

Avrithis, Yannis — National Technical University of Athens


Online Machine Learning for Inference from Multivariate Time-series

Inference and data analysis over networks have become significant areas of research due to the increasing prevalence of interconnected systems and the growing volume of data they produce. Many of these systems generate data in the form of multivariate time series, which are collections of time series data that are observed simultaneously across multiple variables. For example, EEG measurements of the brain produce multivariate time series data that record the electrical activity of different brain regions over time. Cyber-physical systems generate multivariate time series that capture the behaviour of physical systems in response to cybernetic inputs. Similarly, financial time series reflect the dynamics of multiple financial instruments or market indices over time. Through the analysis of these time series, one can uncover important details about the behavior of the system, detect patterns, and make predictions. Therefore, designing effective methods for ...

Rohan Money — University of Agder, Norway


Texture and Image Microstructure Analysis with Modulation Models, Energy and Variational Techniques: Detection & Separation

The subject of the thesis is the emergence and analysis of visual texture microstructure for efficient modeling, descriptive feature extraction and image representation. Main objectives are the problems of image texture modeling and analysis in Computer Vision systems, with emphasis on the subproblems of texture detection, segmentation and separation in images. Advanced modeling and analysis methods are developed in parallel directions: a) Multiband models of narrowband components and spatial modulations, b) Energy methods for texture feature extraction, c) Variational techniques of image decomposition and texture separation. The proposed methods are applied on a database of digitized soilsection images to quantify and evaluate the biological quality of soils and in different types and collections of natural images. The developed model is the common ground to approach texture in its different forms and applications. In total, a complete system for texture processing ...

Evangelopoulos, Georgios — National Technical University of Athens


Image Sequence Restoration Using Gibbs Distributions

This thesis addresses a number of issues concerned with the restoration of one type of image sequence namely archived black and white motion pictures. These are often a valuable historical record but because of the physical nature of the film they can suffer from a variety of degradations which reduce their usefulness. The main visual defects are ‘dirt and sparkle’ due to dust and dirt becoming attached to the film or abrasion removing the emulsion and ‘line scratches’ due to the film running against foreign bodies in the camera or projector. For an image restoration algorithm to be successful it must be based on a mathematical model of the image. A number of models have been proposed and here we explore the use of a general class of model known as Markov Random Fields (MRFs) based on Gibbs distributions by ...

Morris, Robin David — University of Cambridge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.