Detection in strongly nonhomogeneous data and application to airborne RADAR (2008)
Advanced GPR data processing algorithms for detection of anti-personnel landmines
Ground Penetrating Radar (GPR) is seen as one of several promising technologies aimed to help mine detection. GPR is sensitive to any inhomogeneity in the ground. Therefore any APM regardless of the metal content can be detected. On the other hand, all the inhomogeneities, which do not represent mines, show up as a clutter in GPR images. Moreover, it is known that reflectivity of APM is often weaker than that of stones, pieces of shrapnel and barbed wire, etc. Altogether these factors cause GPR to produce unacceptably high false alarm rate whilst it reaches the 99.6% detection rate which is prescribed by an UN resolution as a standard for humanitarian demining. The main goal of the work presented in the thesis is reduction of the false alarm rate while keeping the 99.6% detection rate intact. To reach this goal a ...
Kovalenko, Vsevolod — Delft University of Technology
When the noise affecting time series is colored with unknown statistics, a difficulty for periodic signal detection is to control the true significance level at which the detection tests are conducted. This thesis investigates the possibility of using training datasets of the noise to improve this control. Specifically, for the case of regularly sampled observations, we analyze the performances of various detectors applied to periodograms standardized using the noise training datasets. Emphasis is put on sparse detection in the Fourier domain and on the limitation posed by the necessary finite size of the training sets available in practice. We study the resulting false alarm and detection rates and show that the proposed standardization leads, in some cases, to powerful constant false alarm rate tests. Although analytical results are derived in an asymptotic regime, numerical results show that the theory accurately ...
Sulis Sophia — Université Côte d’Azur
Multimodal epileptic seizure detection : towards a wearable solution
Epilepsy is one of the most common neurological disorders, which affects almost 1% of the population worldwide. Anti-epileptic drugs provide adequate treatment for about 70% of epilepsy patients. The remaining 30% of the patients continue to have seizures, which drastically affects their quality of life. In order to obtain efficacy measures of therapeutic interventions for these patients, an objective way to count and document seizures is needed. However, in an outpatient setting, one of the major problems is that seizure diaries kept by patients are unreliable. Automated seizure detection systems could help to objectively quantify seizures. Those detection systems are typically based on full scalp Electroencephalography (EEG). In an outpatient setting, full scalp EEG is of limited use because patients will not tolerate wearing a full EEG cap for long time periods during daily life. There is a need for ...
Vandecasteele, Kaat — KU Leuven
Bayesian State-Space Modelling of Spatio-Temporal Non-Gaussian Radar Returns
Radar backscatter from an ocean surface is commonly referred to as sea clutter. Any radar backscatter not due to the scattering from an ocean surface constitutes a potential target. This thesis is concerned with the study of target detection techniques in the presence of high resolution sea clutter. In this dissertation, the high resolution sea clutter is treated as a compound process, where a fast oscillating speckle component is modulated in power by a slowly varying modulating component. While the short term temporal correlations of the clutter are associated with the speckle, the spatial correlations are largely associated with the modulating component. Due to the disparate statistical and correlation properties of the two components, a piecemeal approach is adopted throughout this thesis, whereby the spatial and the temporal correlations of high resolution sea clutter are treated independently. As an extension ...
Noga, Jacek Leszek — University of Cambridge
Signal processing of FMCW Synthetic Aperture Radar data
In the field of airborne earth observation there is special attention to compact, cost effective, high resolution imaging sensors. Such sensors are foreseen to play an important role in small-scale remote sensing applications, such as the monitoring of dikes, watercourses, or highways. Furthermore, such sensors are of military interest; reconnaissance tasks could be performed with small unmanned aerial vehicles (UAVs), reducing in this way the risk for one's own troops. In order to be operated from small, even unmanned, aircrafts, such systems must consume little power and be small enough to fulfill the usually strict payload requirements. Moreover, to be of interest for the civil market, cost effectiveness is mandatory. Frequency Modulated Continuous Wave (FMCW) radar systems are generally compact and relatively cheap to purchase and to exploit. They consume little power and, due to the fact that they are ...
Meta, Adriano — Delft University of Technology
Advances in Detection and Classification for Through-the-Wall Radar Imaging
In this PhD thesis the problem of detection and classification of stationary targets in Through-the-Wall Radar Imaging is considered. A multiple-view framework is used in which a 3D scene of interest is imaged from a set of vantage points. By doing so, clutter and noise is strongly suppressed and target detectability increased. In target detection, centralized as well as decentralized frameworks for simultaneous image fusion and detection are examined. The practical case when no prior knowledge on image statistics is available and all inference must be drawn from the data at hand is specifically considered. An adaptive detection scheme is proposed which iteratively adapts in a non-stationary environment. Optimal configurations for this scheme are derived based on morphological operations which allow for automatic and reliable target detection. In a decentralized framework, local decisions are transmitted to a fusion center to ...
Debes, Christian — Technical University of Darmstad
Characterization of the neurometabolic coupling in the premature brain using NIRS and EEG
Every year, an estimated 15 million babies are born preterm, that is, before 37 weeks of gestation. This number is rising in all countries and currently represents more than 1 in 10 babies, affecting families all over the world. During the last decades, the survival rate of prematurely born neonates has steadily increased, mainly as a result of medical and technical progress in neonatal intensive care. The very preterm infants, which represent up to 10% of the preterm infants in the EU, remain at risk for adverse outcome and neurodevelopmental disability. These maladaptive outcomes have a severe effect on the children’s quality of life and a huge economic impact on society. In order to reduce this burden and improve neonatal care in general, appropriate tools need to be developed to identify the neonates with a higher risk of adverse outcomes. ...
Hendrikx, Dries — KU Leuven
Epilepsy is one of the most common neurological diseases that manifests in repetitive epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. There is no cure for epilepsy and sometimes even medication and other therapies, like surgery, vagus nerve stimulation or ketogenic diet, do not control the number of seizures. In that case, long-term (home) monitoring and automatic seizure detection would enable the tracking of the evolution of the disease and improve objective insight in any responses to medical interventions or changes in medical treatment. Especially during the night, supervision is reduced; hence a large number of seizures is missed. In addition, an alarm should be integrated into the automated seizure detection algorithm for severe seizures in order to help the ...
Milošević, Milica — KU Leuven
Theoretical aspects and real issues in an integrated multiradar system
In the last few years Homeland Security (HS) has gained a considerable interest in the research community. From a scientific point of view, it is a difficult task to provide a definition of this research area and to exactly draw up its boundaries. In fact, when we talk about the security and the surveillance, several problems and aspects must be considered. In particular, the following factors play a crucial role and define the complexity level of the considered application field: the number of potential threats can be high and uncertain; the threat detection and identification can be made more complicated by the use of camouflaging techniques; the monitored area is typically wide and it requires a large and heterogeneous sensor network; the surveillance operation is strongly related to the operational scenario, so that it is not possible to define a ...
Fortunati Stefano — University of Pisa
The interest for the intelligent vehicle field has been increased during the last years, must probably due to an important number of road accidents. Many accidents could be avoided if a device attached to the vehicle would assist the driver with some warnings when dangerous situations are about to appear. In recent years, leading car developers have recorded significant efforts and support research works regarding the intelligent vehicle field where they propose solutions for the existing problems, especially in the vision domain. Road detection and following, pedestrian or vehicle detection, recognition and tracking, night vision, among others are examples of applications which have been developed and improved recently. Still, a lot of challenges and unsolved problems remain in the intelligent vehicle domain. Our purpose in this thesis is to design an Obstacle Recognition system for improving the road security by ...
Apatean, Anca Ioana — Institut National des Sciences Appliquées de Rouen
Analysis of energy based signal detection
The focus of this thesis is on the binary signal detection problem, i.e., if a signal or signals are present or not. Depending on the application, the signal to be detected can be either unknown or known. The detection is based on some function of the received samples which is compared to a threshold. If the threshold is exceeded, it is decided that signal(s) is (are) present. Energy detectors (radiometers) are often used due to their simplicity and good performance. The main goal here is to develop and analyze energy based detectors as well as power-law based detectors. Different possibilities for setting the detection threshold for a quantized total power radiometer are analyzed. The main emphasis is on methods that use reference samples. In particular, the cell-averaging (CA) constant false alarm rate (CFAR) threshold setting method is analyzed. Numerical examples ...
Janne Lehtomäki — University of Oulou
Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing
Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable ...
Roemer, Florian — Ilmenau University of Technology
Applications for the new generations of Global Navigation Satellite Systems (GNSS) are developing rapidly and attract a great interest. Both US Global Positioning System (GPS) and European Galileo signals use Direct Sequence-Code Division Multiple Access (DS-CDMA) technology, where code and frequency synchronization are important stages at the receiver. The GNSS receivers estimate jointly the code phase and the Doppler spread through a two-dimensional searching process in time-frequency plane. Since both GPS and Galileo systems will send several signals on the same carriers, a new modulation type - the Binary Offset Carrier (BOC) modulation, has been selected. The main target of this modulation is to provide a better spectral separation with the existing BPSK-modulated GPS signals, while allowing optimal usage of the available bandwidth for different GNSS signals. The BOC modulation family includes several BOC variants, such as sine BOC (SinBOC), ...
Burian, Adina — Universitat Trier
Heart rate variability : linear and nonlinear analysis with applications in human physiology
Cardiovascular diseases are a growing problem in today’s society. The World Health Organization (WHO) reported that these diseases make up about 30% of total global deaths and that heart diseases have no geographic, gender or socioeconomic boundaries. Therefore, detecting cardiac irregularities early-stage and a correct treatment are very important. However, this requires a good physiological understanding of the cardiovascular system. The heart is stimulated electrically by the brain via the autonomic nervous system, where sympathetic and vagal pathways are always interacting and modulating heart rate. Continuous monitoring of the heart activity is obtained by means of an ElectroCardioGram (ECG). Studying the fluctuations of heart beat intervals over time reveals a lot of information and is called heart rate variability (HRV) analysis. A reduction of HRV has been reported in several cardiological and noncardiological diseases. Moreover, HRV also has a prognostic ...
Vandeput, Steven — KU Leuven
Electrocardiography (ECG) is the standard method for assessing the state of the cardiovascular system non-invasively. In the context of magnetic resonance imaging (MRI) the ECG signal is used for cardiac monitoring and triggering, i.e., the acquisition of images synchronized to the cardiac cycle. However, ECG acquisition is impeded by the static and dynamic magnetic fields which alter the measured voltages and may reduce signal-to-noise ratio (SNR), leading to false alarms during cardiac monitoring or to image artifacts during cardiac triggering. A major source of noise is the magnetohydrodynamic (MHD) effect as it is proportional to field strength and represents a key challenge in application of ultra-high-field (UHF) MRI >=7 T. In this work, two approaches for overcoming these limitations are proposed: i) Development of a hardware and software system based on the principal of photoplethysmography imaging (PPGi) as an optical ...
Spicher, Nicolai — University of Duisburg-Essen
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.