Parallelized Architectures for Low Latency Turbo Structures (2007)
Design and applications of Filterbank structures implementing Reed-Solomon codes
In nowadays communication systems, error correction provides robust data transmission through imperfect (noisy) channels. Error correcting codes are a crucial component in most storage and communication systems – wired or wireless –, e.g. GSM, UMTS, xDSL, CD/DVD. At least as important as the data integrity issue is the recent realization that error correcting codes fundamentally change the trade-offs in system design. High-integrity, low redundancy coding can be applied to increase data rate, or battery life time or by reducing hardware costs, making it possible to enter mass market. When it comes to the design of error correcting codes and their properties, there are two main theories that play an important role in this work. Classical coding theory aims at finding the best code given an available block length. This thesis focuses on the ubiquitous Reed-Solomon codes, one of the major ...
Van Meerbergen, Geert — Katholieke Universiteit Leuven
Factor Graph Based Detection Schemes for Mobile Terrestrial DVB Systems with Long OFDM Blocks
This PhD dissertation analyzes the performance of second generation digital video broadcasting (DVB) systems in mobile terrestrial environments and proposes an iterative detection algorithm based on factor graphs (FG) to reduce the distortion caused by the time variation of the channel, providing error-free communication in very severe mobile conditions. The research work focuses on mobile scenarios where the intercarrier interference (ICI) is very high: high vehicular speeds when long orthogonal frequency-division multiplexing (OFDM) blocks are used. As a starting point, we provide the theoretical background on the main topics behind the transmission and reception of terrestrial digital television signals in mobile environments, long with a general overview of the main signal processing techniques included in last generation terrestrial DVB systems. The proposed FG-based detector design is then assessed over a simpli ed bit-interleaved coded modulation (BICM)-OFDM communication scheme for a ...
Ochandiano, Pello — University of Mondragon
Adaptive Signal Processing for Power Line Communications
This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes. The first part ...
Tripodi, Carlo — Università degli Studi di Parma
Polar Coding for the Wiretap Broadcast Channel
In the next era of communications, where heterogeneous, asynchronous and ultra-low latency networks are drawn on the horizon, classical cryptography might be inadequate due to the excessive cost of maintaining a public-key infrastructure and the high computational capacity required in the devices. Moreover, it is becoming increasingly difficult to guarantee that the computational capacity of adversaries would not be able to break the cryptograms. Consequently, information-theoretic security, and particularly its application to keyless secrecy communication, might play an important role in the future development of these systems. The notion of secrecy in this case does not rely on any assumption of the computational power of eavesdroppers, and is based instead on guaranteeing statistical independence between the information message and the observed cryptogram. This is possible by constructing channel codes that exploit the noisy behavior of the channels involved in the ...
del Olmo Alòs, Jaume — Universitat Politècnica de Catalunya
Advanced Transceiver Design for Continuous Phase Modulation
This dissertation proposes advanced transceiver designs applying turbo and space-time (ST) concepts to continuous phase modulation (CPM), which is preferred in numerous power- and band-limited communication systems for its constant envelope and spectral efficiency. Despite its highly attractive spectral properties, maximum-likelihood detection of CPM over the frequency-selective multipath fading channels can bring impractical complexity issues because of the intensive search over a single super trellis which combines the effects of the modulation and the multipath channel. Application of the reduced-state trellis search algorithms results in lower complexity but the computational load could still be prohibitively large to obtain high performance in long channel impulse responses. In the dissertation, instead of employing trellis-based combined detection methods, equalization and demodulation functions are separated and novel low-complexity receivers with soft-input soft-output (SISO) time-domain and frequency-domain linear equalizers are proposed for bit-interleaved coded CPM, ...
Ozgul, Baris — Bogazici University
In a communication system it results undoubtedly of great interest to compress the information generated by the data sources to its most elementary representation, so that the amount of power necessary for reliable communications can be reduced. It is often the case that the redundancy shown by a wide variety of information sources can be modelled by taking into account the probabilistic dependance among consecutive source symbols rather than the probabilistic distribution of a single symbol. These sources are commonly referred to as single or multiterminal sources "with memory" being the memory, in this latter case, the existing temporal correlation among the consecutive symbol vectors generated by the multiterminal source. It is well known that, when the source has memory, the average amount of information per source symbol is given by the entropy rate, which is lower than its entropy ...
Del Ser, Javier — University of Navarra (TECNUN)
Massive MIMO and Multi-hop Mobile Communication Systems
Since the late 1990s, massive multiple-input multiple-output (MIMO) has been suggested to improve the achievable data rate in wireless communication systems. To overcome the high path losses in the high frequency bands, the use of massive MIMO will be a must rather than an option in future wireless communication systems. At the same time, due to the high cost and high energy consumption of the traditional fully digital beamforming architecture, a new beamforming architecture is required. Among the proposed solutions, the hybrid analog digital (HAD) beamforming architecture has received considerable attention. The promising massive MIMO gains heavily rely on the availability of accurate channel state information (CSI). This thesis considers a wideband massive MIMO orthogonal frequency division multiplexing (OFDM) system. We propose a channel estimation method called sequential alternating least squares approximation (SALSA) by exploiting a hidden tensor structure in ...
Gherekhloo, Sepideh — Technische Universität Ilmenau
Short-length Low-density Parity-check Codes: Construction and Decoding Algorithms
Error control coding is an essential part of modern communications systems. LDPC codes have been demonstrated to offer performance near the fundamental limits of channels corrupted by random noise. Optimal maximum likelihood decoding of LDPC codes is too complex to be practically useful even at short block lengths and so a graph-based message passing decoder known as the belief propagation algorithm is used instead. In fact, on graphs without closed paths known as cycles the iterative message passing decoding is known to be optimal and may converge in a single iteration, although identifying the message update schedule which allows single-iteration convergence is not trivial. At finite block lengths graphs without cycles have poor minimum distance properties and perform poorly even under optimal decoding. LDPC codes with large block length have been demonstrated to offer performance close to that predicted for ...
Healy, Cornelius Thomas — University of York
A parallel successive convex approximation framework with smoothing majorization for phase retrieval
This dissertation is concerned with the design and analysis of approximation-based methods for nonconvex nonsmooth optimization problems. The main idea behind those methods is to solve a difficult optimization problem by converting it into a sequence of simpler surrogate/approximate problems. In the two widely-used optimization frameworks, namely, the majorization-minimization (MM) framework and the successive convex approximation (SCA) framework, the approximate function is designed to be a global upper bound, called majorizer, of the original objective function and convex, respectively. Generally speaking, there are two desiderata of the approximate function, i.e., the tightness to the original objective function and the low computational complexity of minimizing the approximate function. In particular, we focus on techniques that can be used to construct a parallelizable approximate problem so as to take advantage of modern multicore computing platforms. The first part of this thesis aims ...
Liu, Tianyi — Technical University of Darmstadt
Feedback-Channel and Adaptive MIMO Coded-Modulations
When the transmitter of a communication system disposes of some Channel State Information (CSI), it is possible to design linear precoders that optimally allocate the power inducing high gains either in terms of capacity or in terms of reliable communications. In practical scenarios, this channel knowledge is not perfect and thus the transmitted signal suffers from the mismatch between the CSI at the transmitter and the real channel. In that context, this thesis deals with two different, but related, topics: the design of a feasible transmitter channel tracker for time varying channels, and the design of optimal linear precoders robust to imperfect channel estimates. The first part of the thesis proposes the design of a channel tracker that provides an accurate CSI at the transmitter by means of a low capacity feedback link. Historically, those schemes have been criticized because ...
Rey, Francesc — Universitat Politecnica de Catalunya
Efficient Decoding Techniques for LDPC Codes
Efficient decoding techniques for LDPC codes are in demand, since these codes are included in many standards nowadays. Although the theoretical performance of LDPC codes is impressive, their practical implementation leads to problems like numerical inaccuracy, limited memory resources, etc. We investigate methods that are suited to reduce the decoding complexity while still keeping the loss in performance small. We aim to reduce the complexity using three approaches: simplification of the component decoders, restricting the message passing algorithm to binary variables and combining the LDPC decoder with other receiver tasks like demapping or multi-user detection. For the simplification of the component decoders, we analyze the min-sum algorithm and derive a theoretical framework which is used to explain previous heuristic approaches to improve the performance of this algorithm. Using this framework, we are able to modify the algorithm in order to ...
Lechner, G. — Vienna University of Technology
Identification using Convexification and Recursion
System identification studies how to construct mathematical models for dynamical systems from the input and output data, which finds applications in many scenarios, such as predicting future output of the system or building model based controllers for regulating the output the system. Among many other methods, convex optimization is becoming an increasingly useful tool for solving system identification problems. The reason is that many identification problems can be formulated as, or transformed into convex optimization problems. This transformation is commonly referred to as the convexification technique. The first theme of the thesis is to understand the efficacy of the convexification idea by examining two specific examples. We first establish that a l1 norm based approach can indeed help in exploiting the sparsity information of the underlying parameter vector under certain persistent excitation assumptions. After that, we analyze how the nuclear ...
Dai, Liang — Uppsala University
Testbed Design for Wireless Communications Systems Assessment
Since Marconi succeeded in carrying out the first wireless transmission in 1894, experimental research has been always linked with wireless communications. Today, most wireless communications research relies only on computer simulations. Although computer simulations are necessary and recommendable for wireless systems evaluation, they only reflect the simulation environment rather than the actual scenarios in which wireless systems operate. Consequently, it is desirable to assess wireless communications systems in real-world scenarios while, at the same time, keeping the required effort within reasonable terms. Among the different strategies suitable for undertaking such assessment, the testbed approach constitutes a simple and flexible enough solution based on the software-defined radio concept in which only the fundamental operations (usually the transmission and the acquisition) are carried out in real- time, while the remaining tasks are implemented off-line in high-level programming languages (e.g. MATLAB) and using ...
Garcia Naya, Jose Antonio — Universidade da Coruna
Advanced Interference Suppression Techniques for Spread Spectrum Systems
Code division multiple access (CDMA) techniques have been widely employed by different wireless systems with many advantages. However, the performance of these systems is limited by interference. A number of different interference suppression techniques have been proposed, including multiuser detection, beamforming, adaptive supervised and blind algorithms, and transmit processing techniques requiring a limited feedback channel. Recently, CDMA techniques have also been combined with multicarrier and multiantenna schemes to further increase the system capacity and performance. This thesis investigates the existing algorithms and structures and proposes novel interference suppression algorithms for spread spectrum systems. Firstly we investigate blind constrained constant modulus (CCM) stochastic gradient (SG) receivers with a low-complexity variable step-size mechanism for downlink direct sequence CDMA (DS-CDMA) systems. This algorithm provides better performance than existing blind schemes in non-stationary scenarios. Convergence and tracking analyses of the proposed adaptation techniques are ...
Yunlong Cai — University of York
Near Maximum Likelihood Multiuser Receivers for Direct Sequence Code Division Multiple Access
Wideband wireless access based on direct-sequence code-division multiple access (DS-CDMA) has been adopted for third-generation mobile communications systems. Hence, DS-CDMA downlink communications systems form the platform for the work in this thesis. The principles of the spread spectrum concept and DS-CDMA technology are first outlined, including a description of the system model and the conventional receiver. The two classes of codes used in this system, namely spreading codes and forward error correction codes (including Turbo codes), are discussed. Due to the fact that practical communications channels are non-ideal, the performance of an individual user is interference limited. As a result, the capacity of the system is greatly restricted. Fortunately, multiuser detection is a scheme that can effectively counteract this multiple access interference. However, the optimum multiuser detection scheme is far too computationally intensive for practical use. Hence, the fundamental interest ...
Sim, Hak Keong — University Of Edinburgh
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.