Transmission over Time- and Frequency-Selective Mobile Wireless Channels (2005)
Digital compensation of front-end non-idealities in broadband communication systems
The wireless communication industry has seen a tremendous growth in the last few decades. The ever increasing demand to stay connected at home, work, and on the move, with voice and data applications, has continued the need for more sophisticated end-user devices. A typical smart communication device these days consists of a radio system that can access a mixture of mobile cellular services (GSM, UMTS, etc), indoor wireless broadband services (WLAN-802.11b/g/n), short range and low energy personal communications (Bluetooth), positioning and navigation systems (GPS), etc. A smart device capable of meeting all these requirements has to be highly flexible and should be able to reconfigure radio transmitters and receivers as and when required. Further, the radio modules used in these devices should be extremely small so that the device itself is portable. In addition, the device should also be economical ...
Tandur, Deepaknath — Katholieke Universiteit Leuven
Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems
To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple ...
Kiayani, Adnan — Tampere University of Technology
Time Domain Channel Shortening for Multicarrier Systems
Multi-Carrier (MC) modulation has various advantages that make it useful for a wide variety of digital communication systems. Actually, it has been chosen as the physical layer standard for a diversity of basic systems such as digital transmission over telephone lines, applications in broadcasting and in wireless networks. The most important advantage of the MC system is its robustness against interferences. In fact, the cyclic prefix (CP) insertion through MC symbols provides higher immunity against delay spread and interferences. Therefore, as long as channel dispersion is not longer than the CP, system performance does not degrade and the need of time-domain equalization is not usually immediate. However, highly time dispersive channel leads to a significant reduction of the transmission data rate since the received signal is corrupted by both inter-carrier and inter symbol interferences. To avoid such a performance degradation, ...
Ben Salem, Emna — Sup'Com/University of Carthage, Tunisia
Advanced Transceiver Design for Continuous Phase Modulation
This dissertation proposes advanced transceiver designs applying turbo and space-time (ST) concepts to continuous phase modulation (CPM), which is preferred in numerous power- and band-limited communication systems for its constant envelope and spectral efficiency. Despite its highly attractive spectral properties, maximum-likelihood detection of CPM over the frequency-selective multipath fading channels can bring impractical complexity issues because of the intensive search over a single super trellis which combines the effects of the modulation and the multipath channel. Application of the reduced-state trellis search algorithms results in lower complexity but the computational load could still be prohibitively large to obtain high performance in long channel impulse responses. In the dissertation, instead of employing trellis-based combined detection methods, equalization and demodulation functions are separated and novel low-complexity receivers with soft-input soft-output (SISO) time-domain and frequency-domain linear equalizers are proposed for bit-interleaved coded CPM, ...
Ozgul, Baris — Bogazici University
Equalization and echo cancellation in DMT-based systems
Digital subscriber line (DSL) is a technology to provide broadband communications over the existing twisted pair telephone network. The signals received by a DSL modem are typically corrupted by channel induced noise, background noise, radio frequeny interference (RFI) and undesired echo. In this thesis we focus on the design of digital signal processing algorithms to improve the bit rate and/or the loop reach of current and future DSL systems. Furthermore, in the proposed algorithms we aim at keeping the hardware cost as low as possible. The transmission format of many DSL systems is based on discrete multitone modulation (DMT). To combat channel induced noise, DMT-based receivers perform an equalization step by means of a time domain equalizer (TEQ) and a one-tap frequency domain equalizer (FEQ) per used tone. Despite the variety of TEQ design methods presented in the literature, we ...
Ysebaert, Geert — Katholieke Universiteit Leuven
Equalization of Doubly Selective Channels Using Iterative and Recursive Methods
Novel iterative and recursive schemes for the equalization of time-varying fre- quency selective channels are proposed. Such doubly selective channels are shown to be common place in mobile communication systems, for example in second generation systems based on time division multiple access (TDMA) and so-called beyond third generation systems most probably utilizing orthogonal frequency division multiplex- ing (OFDM).
Ahmed, Sajid — King's College London and Cardiff University
Advanced equalization techniques for DMT-based systems
Digital subscriber line (DSL) technology is one of the fastest growing broadband internet access media. Whereas asymmetric DSL (ADSL) already offers data rates of a few megabits per second, next-generation ADSL2+ and VDSL promise even higher bit rates to support so-called triple play (high-quality video, voice and high-speed data). The use of a large bandwidth over the phone line (up to 12 MHz for VDSL) induces impairments, such as severe channel distortion, echo, narrow-band radiofrequency interference (RFI) and crosstalk from other DSL systems. DSL communication makes use of so-called discrete multitone (DMT) modulation, supplemented with advanced digital signal processing algorithms, to tackle these impairments and serve a maximum number of customers. In this thesis, we focus on channel equalization and RFI mitigation algorithms that outperform existing algorithms in terms of bit rate. DMT equalization is typically done by means of ...
Vanbleu, Koen — Katholieke Universiteit Leuven
Design and Evaluation of OFDM Radio Interfaces for High Mobility Communications
In the last two decades, multicarrier modulations have emerged as a low complexity solution to combat the effects of the multipath in wireless communications. Among them, Orthogonal Frequency Division Multiplexing (OFDM) is possibly the most studied modulation scheme, and has also been widely adopted as the foundation of industry standards such as WiMAX or LTE. However, OFDM is sensitive to time-selective channels, which are featured in mobility scenarios, due to the appearance of Inter-Carrier Interference (ICI). Implementation of hardware equipment for the end user is usually implemented in dedicated chips, but in research environments, more flexible solutions are preferred. One popular approach is the so-called Software Defined Radio (SDR), where the signal processing algorithms are implemented in reconfigurable hardware such as Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The aim of this work is two-fold. On the ...
Suárez Casal, Pedro — University of A Coruña
Signal Processing for Ultra Wideband Transceivers
In this thesis novel implementation approaches for standardized and non-standardized ultra wide-band (UWB) systems are presented. These implementation approaches include signal processing algorithms to achieve processing of UWB signals in transceiver front-ends and in digital back-ends. A parallelization of the transceiver in the frequency-domain has been achieved with hybrid filterbank transceivers. The standardized MB-OFDM signaling scheme allows par- allelization in the frequency domain by distributing the orthogonal multicarrier modulation onto multiple units. Furthermore, the channel’s response to wideband signals has been parallelized in the frequency domain and the effects of the parallelization have been investi- gated. Slight performance decreases are observed, where the limiting effects are truncated sidelobes and filter mismatches in analog front-ends. Measures for the performance loss have been defined. For UWB signal generation, a novel broadband signal generation approach is presented. For that purpose, multiple digital-to-analog converters ...
Krall, Christoph — Graz University of Technology
When data is transmitted over the wireless communication channel, the transmit signal experiences distortion depending on the channel¢s fading characteristics. On the one hand, this calls for efficient processing at the receiver to mitigate the detrimental effects of the channel and maximize data throughput. On the other hand, the diversity inherently present in these channels can be leveraged with appropriate transmit processing in order to increase the reliability of the transmission link. Recently, in [1] it was shown that the channel characteristics can be exploited to maximize the total data throughput in the interference channel where multiple user pairs rely on the same resource to communicate among themselves. In this PhD dissertation, we first propose novel equalizer designs for frequency selective channels. We then present new results on the diversity gain of equalizers in fading channels when appropriate precoding is ...
Shenoy, Shakti Prasad — EURECOM/Mobile Communications
Equalization and echo cancellation for DMT-based DSL modems
Broadband communications over the local telephone loop has become feasible nowadays by means of Digital Subscriber Line (DSL) technologies. Asymmetric DSL and one proposal for Very high bit rate DSL adopt Discrete Multitone (DMT) as modulation scheme. In this thesis we develop new equalization and echo cancellation structures for DMT-based receivers. Our main motivation is the application to DMT-based DSL-modems. In literature, a DMT-based receiver containing a multitap time domain equalizer (TEQ) and a 1-taps frequency domain equalizer per tone, has been presented. The TEQ is usually initialized by means of the so-called channel shortening algorithm. This does however not correspond to bit rate optimization, which is a major disadvantage. In part I, we aim at improving upon the channel shortening algorithm. In a first attempt, we maintain the receiver structure and only change the TEQ-initialization algorithm. In a second ...
Van Acker, Katleen — Katholieke Universiteit Leuven
Transmit diversity is a powerful technique for enhancing the channel capacity and reliability of multiple-input and multiple-output (MIMO) wireless systems. This thesis considers extended orthogonal space-time block coding (EO-STBC) with beamsteering angles, which have previously been shown to potentially achieve full diversity and array gain with four transmit and one receive antenna. The optimum setting of beamsteering angles applied in the transmitter, which has to be calculated based on channel state information (CSI) at the receiver side, must be quantised and feed back to the transmitter via a reverse feedback link. When operating in a fading scenario, channel coefficients vary smoothly with time. This smooth evolution of channel coefficients motivates the investigation of differential feedback, which can reduce the number of feedback bits, while potentially maintaining near optimum performance. The hypothesis that the smooth evolution of channel coefficients translates into ...
Hussin, Mohamed Nuri Ahmed — University of Strathclyde
OFDM Multi-User Communication Over Time-Variant Channels
Wireless broadband communications for users moving at vehicular speed is a cor- nerstone of future fourth generation (4G) mobile communication systems. We inves- tigate a multi-carrier (MC) code division multiple access (CDMA) system which is based on orthogonal frequency division multiplexing (OFDM). A spreading sequence is used in the frequency domain in order to distinguish individual users and to take advantage of the multipath diversity of the wireless channel. The transmission is block oriented. A block consists of OFDM pilot and OFDM data symbols. At pedestrian velocities the channel can be modelled as block fading. We ap- ply iterative multi-user detection and channel estimation. In iterative receivers soft symbols are derived from the output of an soft-input soft-output decoder. These soft symbols are used in order to reduce the interference from other users and to enhance the channel estimates. We ...
Zemen, T. — Vienna University of Technology
Channel Modeling and Estimation For Wireless Communication Systems Using a Time-Frequency Approach
Broadband wireless communication is a very fast growing communication area. Multicarrier modulation techniques like Orthogonal Frequency Division Multiplexing (OFDM), Biorthogonal Frequency Division Multiplexing (BFDM), Pulse Shaping (PS) and Multi-Carrier Spread Spectrum (MCSS) have recently been introduced as robust techniques against intersymbol interference (ISI) and noise, compared to single carrier communication systems over fast fading multipath communication channels. Therefore, multicarrier modulation techniques have been considered as a candidate for new generation, high data rate broadband wireless communication systems and have been adopted as the related standards. Several examples are the European digital audio broadcasting (DAB) and digital video broadcasting (DVB), the IEEE standands for wireless local area networks (WLAN), 802.11a, and wireless metropolitan area networks (WMAN), 802.16a. However, Doppler frequency shifts, phase offset, local oscillator frequency shifts, and multi-path fading severely degrade the performance of multicarrier communication systems. For fast-varying channels, ...
Yalcin, Mahmut — Istanbul University
Channel Estimation Architectures for Mobile Reception in Emerging DVB Standards
Throughout this work, channel estimation techniques have been analyzed and proposed for moderate and very high mobility DVB (digital video broadcasting) receivers, focusing on the DVB-T2 (Digital Video Broadcasting - Terrestrial 2) framework and the forthcoming DVB-NGH (Digital Video Broadcasting - Next Generation Handheld) standard. Mobility support is one of the key features of these DVB specifications, which try to deal with the challenge of enabling HDTV (high definition television) delivery at high vehicular speed. In high-mobility scenarios, the channel response varies within an OFDM (orthogonal frequency-division multiplexing) block and the subcarriers are no longer orthogonal, which leads to the so-called ICI (inter-carrier interference), making the system performance drop severely. Therefore, in order to successfully decode the transmitted data, ICI-aware detectors are necessary and accurate CSI (channel state information), including the ICI terms, is required at the receiver. With the ...
Martínez, Lorena — University of Mondragon
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.