Theoretical aspects and real issues in an integrated multiradar system

In the last few years Homeland Security (HS) has gained a considerable interest in the research community. From a scientific point of view, it is a difficult task to provide a definition of this research area and to exactly draw up its boundaries. In fact, when we talk about the security and the surveillance, several problems and aspects must be considered. In particular, the following factors play a crucial role and define the complexity level of the considered application field: the number of potential threats can be high and uncertain; the threat detection and identification can be made more complicated by the use of camouflaging techniques; the monitored area is typically wide and it requires a large and heterogeneous sensor network; the surveillance operation is strongly related to the operational scenario, so that it is not possible to define a ...

Fortunati Stefano — University of Pisa


Bayesian State-Space Modelling of Spatio-Temporal Non-Gaussian Radar Returns

Radar backscatter from an ocean surface is commonly referred to as sea clutter. Any radar backscatter not due to the scattering from an ocean surface constitutes a potential target. This thesis is concerned with the study of target detection techniques in the presence of high resolution sea clutter. In this dissertation, the high resolution sea clutter is treated as a compound process, where a fast oscillating speckle component is modulated in power by a slowly varying modulating component. While the short term temporal correlations of the clutter are associated with the speckle, the spatial correlations are largely associated with the modulating component. Due to the disparate statistical and correlation properties of the two components, a piecemeal approach is adopted throughout this thesis, whereby the spatial and the temporal correlations of high resolution sea clutter are treated independently. As an extension ...

Noga, Jacek Leszek — University of Cambridge


Adaptive target detection in radar imaging

This thesis addresses a target detection problem in radar imaging for which the co- variance matrix of an unknown Gaussian clutter background has block diagonal structure. This block diagonal structure is the consequence of a target lying along a boundary between two statistically independent clutter regions. We consider three di erent assumptions on knowledge of the clutter covariance structure: both clutter types totally unknown, one of the clutter types known except for its variance, and one of the clutter types completely known. Here we design adaptive detection algorithms using both the generalized likelihood ratio (GLR) and the invariance principles. There has been considerable recent interest in applying invariant hypothesis testing as an alternative to the GLR test. This interest has been motivated by several attractive theoretical properties of invariant tests including: exact robustness to variation of nuisance parameters, possible nite-sample ...

Kim, Hyung Soo — University of Michigan


Generalized Consistent Estimation in Arbitrarily High Dimensional Signal Processing

The theory of statistical signal processing finds a wide variety of applications in the fields of data communications, such as in channel estimation, equalization and symbol detection, and sensor array processing, as in beamforming, and radar systems. Indeed, a large number of these applications can be interpreted in terms of a parametric estimation problem, typically approached by a linear filtering operation acting upon a set of multidimensional observations. Moreover, in many cases, the underlying structure of the observable signals is linear in the parameter to be inferred. This dissertation is devoted to the design and evaluation of statistical signal processing methods under realistic implementation conditions encountered in practice. Traditional statistical signal processing techniques intrinsically provide a good performance under the availability of a particularly high number of observations of fixed dimension. Indeed, the original optimality conditions cannot be theoretically guaranteed ...

Rubio, Francisco — Universitat Politecnica de Catalunya


Polynomial Matrix Eigenvalue Decomposition Techniques for Multichannel Signal Processing

Polynomial eigenvalue decomposition (PEVD) is an extension of the eigenvalue decomposition (EVD) for para-Hermitian polynomial matrices, and it has been shown to be a powerful tool for broadband extensions of narrowband signal processing problems. In the context of broadband sensor arrays, the PEVD allows the para-Hermitian matrix that results from the calculation of a space-time covariance matrix of the convolutively mixed signals to be diagonalised. Once the matrix is diagonalised, not only can the correlation between different sensor signals be removed but the signal and noise subspaces can also be identified. This process is referred to as broadband subspace decomposition, and it plays a very important role in many areas that require signal separation techniques for multichannel convolutive mixtures, such as speech recognition, radar clutter suppression, underwater acoustics, etc. The multiple shift second order sequential best rotation (MS-SBR2) algorithm, built ...

Wang, Zeliang — Cardiff University


SPACE-TIME PARAMETRIC APPROACH TO EXTENDED AUDIO REALITY (SP-EAR)

The term extended reality refers to all possible interactions between real and virtual (computed generated) elements and environments. The extended reality field is rapidly growing, primarily through augmented and virtual reality applications. The former allows users to bring digital elements into the real world, while the latter lets us experience and interact with an entirely virtual environment. While currently extended reality implementations primarily focus on the visual domain, we cannot underestimate the impact of auditory perception in order to provide a fully immersive experience. As a matter of fact, effective handling of the acoustic content is able to enrich the engagement of users. We refer to Extended Audio Reality (EAR) as the subset of extended reality operations related to the audio domain. In this thesis, we propose a parametric approach to EAR conceived in order to provide an effective and ...

Pezzoli Mirco — Politecnico di Milano


Partial Relaxation: A Computationally Efficient Direction-of-Arrival Estimation Framework

Direction-of-Arrival (DOA) estimation from data collected at a sensor array in the presence of noise has been a fundamental and long-established research topic of interest in sensor array processing. The application of DOA estimation does not only restrict to radar but also spans multiple additional fields of research, including radio astronomy, biomedical imaging, seismic exploration, wireless communication, among others. Due to the wide applications of DOA estimation, various methods have been developed in the literature to increase the resolution capability, computational efficiency, and robustness of the algorithms. However, a trade-off between the estimation performance and the computational complexity is generally inevitable. This thesis addresses the challenge of developing low-complexity DOA estimators with the ability to resolve closely spaced source signals in the threshold region, i.e., low sample size or low Signal-to-Noise ratio. Motivated by various interpretations of the conventional DOA ...

Trinh Hoang, Minh — Technical University of Darmstadt


Broadband angle of arrival estimation using polynomial matrix decompositions

This thesis is concerned with the problem of broadband angle of arrival (AoA) estimation for sensor arrays. There is a rich theory of narrowband solutions to the AoA problem, which typically involves the covariance matrix of the received data and matrix factorisations such as the eigenvalue decomposition (EVD) to reach optimality in various senses. For broadband arrays, such as found in sonar, acoustics or other applications where signals do not fulfil the narrowband assumption, working with phase shifts between different signals — as sufficient in the narrowband case — does not suffice and explicit lags need to be taken into account. The required space-time covariance matrix of the data now has a lag dimension, and classical solutions such as those based on the EVD are no longer directly applicable. There are a number of existing broadband AoA techniques, which are ...

Alrmah, Mohamed Abubaker — University of Strathclyde


Algorithmic Enhancements to Polynomial Matrix Factorisations

In broadband array processing applications, an extension of the eigenvalue decomposition (EVD) to parahermitian Laurent polynomial matrices - named the polynomial matrix EVD (PEVD) - has proven to be a useful tool for the decomposition of space-time covariance matrices and their associated cross-spectral density matrices. Existing PEVD methods typically operate in the time domain and utilise iterative frameworks established by the second-order sequential best rotation (SBR2) or sequential matrix diagonalisation (SMD) algorithms. However, motivated by recent discoveries that establish the existence of an analytic PEVD - which is rarely recovered by SBR2 or SMD - alternative algorithms that better meet analyticity by operating in the discrete Fourier transform (DFT)-domain have received increasing attention. While offering promising results in applications including broadband MIMO and beamforming, the PEVD has seen limited deployment in hardware due to its high computational complexity. If the ...

Coutts, Fraser Kenneth — University of Strathclyde


Distributed Space-Time Coding Techniques with Limited Feedback in Cooperative MIMO Networks

Multi-input multi-output (MIMO) wireless networks and distributed MIMO relaying wireless networks have attracted significant attention in current generation of wireless communication networks, and will play a key role in the next generation of wireless net- works. The improvement of network capacity, data rate and reliability can be achieved at the cost of increasing computational complexity of employing space-time coding (STC) and distributed STC (DSTC) in MIMO and distributed MIMO relaying networks, respectively. Efficient designs and algorithms to achieve high diversity and coding gains with low computational complexity in encoding and decoding of STC and DSTC schemes are essential. In this thesis, DSTC designs with high diversity and coding gains and efficient detection and code matrices optimization algorithms in cooperative MIMO networks are proposed. Firstly, adaptive power allocation (PA) algorithms with different criteria for a coop- erative MIMO network equipped with ...

Peng, Tong — University of York


Non-Coherent Communication in Multiple-Antenna Systems: Receiver Design, Codebook Construction and Capacity Analysis

The thesis addresses the problem of space-time codebook design for communication in multiple-input multiple-output (MIMO) wireless systems. The realistic and challenging non-coherent setup (channel state information is absent at the receiver) is considered. A generalized likelihood ratio test (GLRT)-like detector is assumed at the receiver and contrary to most existing approaches, an arbitrary correlation structure is allowed for the additive Gaussian observation noise. A theoretical analysis of the probability of error is derived, for both the high and low signal-to-noise ratio (SNR) regimes. This leads to a codebook design criterion which shows that optimal codebooks correspond to optimal packings in a Cartesian product of projective spaces. The actual construction of the codebooks involves solving a high-dimensional, nonlinear, nonsmooth optimization problem which is tackled here in two phases: a convex semi-definite programming (SDP) relaxation furnishes an initial point which is then ...

Beko, Marko — IST, Lisbon


Fitting maximum-entropy models on large sample spaces

This thesis investigates the iterative application of Monte Carlo methods to the problem of parameter estimation for models of maximum entropy, minimum divergence, and maximum likelihood among the class of exponential-family densities. It describes a suite of tools for applying such models to large domains in which exact computation is not practically possible. The first result is a derivation of estimators for the Lagrange dual of the entropy and its gradient using importance sampling from a measure on the same probability space or its image under the transformation induced by the canonical sufficient statistic. This yields two benefits. One is the flexibility to choose an auxiliary distribution for sampling that reduces the standard error of the estimates for a given sample size. The other is the opportunity to re-weight a fixed sample iteratively to reduce the computational burden for each ...

Schofield, Edward — Imperial College London


Direction Finding In The Presence of Array Imperfections, Model Mismatches and Multipath

In direction finding (DF) applications, there are several factors affecting the estimation accuracy of the direction-of-arrivals (DOA) of unknown source locations. The major distortions in the estimation process are due to the array imperfections, model mismatches and multipath. The array imperfections usually exist in practical applications due to the nonidealities in the antenna array such as mutual coupling (MC) and gain/phase uncertainties. The model mismatches usually occur when the model of the received signal differs from the signal model used in the processing stage of the DF system. Another distortion is due to multipath signals. In the multipath scenario, the antenna array receives the transmitted signal from more than one path with different directions and the array covariance matrix is rank-deficient. In this thesis, three new methods are proposed for the problems in DF applications in the presence of array ...

Elbir, Ahmet M. — Middle East Technical Univresity


Parametric and non-parametric approaches for multisensor data fusion

Multisensor data fusion technology combines data and information from multiple sensors to achieve improved accuracies and better inference about the environment than could be achieved by the use of a single sensor alone. In this dissertation, we propose parametric and nonparametric multisensor data fusion algorithms with a broad range of applications. Image registration is a vital first step in fusing sensor data. Among the wide range of registration techniques that have been developed for various applications, mutual information based registration algorithms have been accepted as one of the most accurate and robust methods. Inspired by the mutual information based approaches, we propose to use the joint R´enyi entropy as the dissimilarity metric between images. Since the R´enyi entropy of an image can be estimated with the length of the minimum spanning tree over the corresponding graph, the proposed information-theoretic registration ...

Ma, Bing — University of Michigan


Signal processing of FMCW Synthetic Aperture Radar data

In the field of airborne earth observation there is special attention to compact, cost effective, high resolution imaging sensors. Such sensors are foreseen to play an important role in small-scale remote sensing applications, such as the monitoring of dikes, watercourses, or highways. Furthermore, such sensors are of military interest; reconnaissance tasks could be performed with small unmanned aerial vehicles (UAVs), reducing in this way the risk for one's own troops. In order to be operated from small, even unmanned, aircrafts, such systems must consume little power and be small enough to fulfill the usually strict payload requirements. Moreover, to be of interest for the civil market, cost effectiveness is mandatory. Frequency Modulated Continuous Wave (FMCW) radar systems are generally compact and relatively cheap to purchase and to exploit. They consume little power and, due to the fact that they are ...

Meta, Adriano — Delft University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.