Informed spatial filters for speech enhancement

In modern devices which provide hands-free speech capturing functionality, such as hands-free communication kits and voice-controlled devices, the received speech signal at the microphones is corrupted by background noise, interfering speech signals, and room reverberation. In many practical situations, the microphones are not necessarily located near the desired source, and hence, the ratio of the desired speech power to the power of the background noise, the interfering speech, and the reverberation at the microphones can be very low, often around or even below 0 dB. In such situations, the comfort of human-to-human communication, as well as the accuracy of automatic speech recognisers for voice-controlled applications can be signi cantly degraded. Therefore, e ffective speech enhancement algorithms are required to process the microphone signals before transmitting them to the far-end side for communication, or before feeding them into a speech recognition ...

Taseska, Maja — Friedrich-Alexander Universität Erlangen-Nürnberg


Analog Joint Source Channel Coding for Wireless Communications

In 1948, the Shannon’s work titled ”A mathematical theory of communication” completely revolutionized the way to understand the problem of the reliable communications. He showed that any communications system is able to transmit with an arbitrarily low error probability as long as the transmission rate is kept below a certain limit. The separation between the source and channel coding was also shown as the optimal strategy to achieve the theoretical limits. Those ideas inspire the development of a whole digital communication theory focused on building more and more sophisticated coding schemes. It leads to most of communication systems were designed according to a digital approach and the separation principle from that moment, whereas other alternatives were set aside. However, in the last years, communication systems based on a jointly optimization of the source and channel encoder has aroused the interest ...

Fresnedo Arias, Óscar — University of A Coruña


GRAPH-TIME SIGNAL PROCESSING: FILTERING AND SAMPLING STRATEGIES

The necessity to process signals living in non-Euclidean domains, such as signals de- fined on the top of a graph, has led to the extension of signal processing techniques to the graph setting. Among different approaches, graph signal processing distinguishes it- self by providing a Fourier analysis of these signals. Analogously to the Fourier transform for time and image signals, the graph Fourier transform decomposes the graph signals in terms of the harmonics provided by the underlying topology. For instance, a graph signal characterized by a slow variation between adjacent nodes has a low frequency content. Along with the graph Fourier transform, graph filters are the key tool to alter the graph frequency content of a graph signal. This thesis focuses on graph filters that are performed distributively in the node domain–that is, each node needs to exchange in- formation ...

Elvin Isufi — Delft University of Technology


Adaptive Calibration of Frequency Response Mismatches in Time-Interleaved Analog-to-Digital Converters

The performance of today's communication systems is highly dependent on the employed analog-to-digital converters (ADCs), and in order to provide more flexibility and precision for the emerging communication technologies, high-performance ADCs are required. In this regard, the time-interleaved operation of an array of ADCs (TI-ADC) can be a reasonable solution. A TI-ADC can increase its throughput by using M channel ADCs or subconverters in parallel and sampling the input signal in a time-interleaved manner. However, the performance of a TI-ADC badly suffers from the mismatches among the channel ADCs. The mismatches among channel ADCs distort the TI-ADC output spectrum by introducing spurious tones besides the actual signal components. This thesis deals with the adaptive background calibration of frequency-response mismatches in a TI-ADC. By modeling each channel ADC as a linear time-invariant system, we develop the continuous-time, discrete-time, and time-varying system ...

Saleem, Shahzad — Graz University of Technology


Advanced Multi-Dimensional Signal Processing for Wireless Systems

The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...

Cheng, Yao — Ilmenau University of Technology


Modeling Analog to Digital Converters at Radio Frequency

This work considers behavior modeling of analog to digital converters with applications in the radio frequency range, including the field of telecommunication as well as test and measurement instrumentation, where the conversion from analog to digital signals often is a bottleneck in performance. The models are intended to post-process output data from the converter and thereby improve the performance of the digital signal. By building a model of practical converters and the way in which they deviate from ideal, imperfections can be corrected using post-correction methods. Behavior modeling implies generation of a suitable stimulus, capturing the output data, and characterizing a model. The demands on the test setup are high for converters in the radio frequency range. The test-bed used in this thesis is composed of commercial state-of-the-art instruments and components designed for signal conditioning and signal capture. Further, in ...

Björsell, Niclas — KTH, Signal Processing


Digital Pre-distortion of Microwave Power Amplifiers

With the advent of spectrally efficient wireless communication systems employing modulation schemes with varying amplitude of the communication signal, linearisation techniques for nonlinear microwave power amplifiers have gained significant interest. The availability of fast and cheap digital processing technology makes digital pre-distortion an attractive candidate as a means for power amplifier linearisation since it promises high power efficiency and fleexibility. Digital pre-distortion is further in line with the current efforts towards software defined radio systems, where a principal aim is to substitute costly and inflexible analogue circuitry with cheap and reprogrammable digital circuitry. Microwave power amplifiers are most efficient in terms of delivered microwave output power vs. supplied power if driven near the saturation point. In this operational mode, the amplifier behaves as a nonlinear device, which introduces undesired distortions in the information bear- ing microwave signal. These nonlinear distortions ...

Aschbacher, E. — Vienna University of Technology


Orthonormal Bases for Adaptive filtering

In the field of adaptive filtering the most commonly applied filter structure is the transversal filter, also referred to as the tapped-delay line (TDL). The TDL is composed of a cascade of unit delay elements that are tapped, weighted and then summed. Thus, the output of a TDL is formed by a linear combination of its input signal at various delays. The weights in this linear combination are called the tap weights. The number of delay elements, or equivalently the number of tap weights, determines the duration of the impulse response of the TDL. For this reason, one often speaks of a finite impulse response (FIR) filter. In a general adaptive filtering scheme the adaptive filter aims to minimize a certain measure of error between its output and a desired signal. Usually, a quadratic cost criterion is taken: the so-called ...

Belt, harm — Eindhoven University of Technology


Recursive Algorithms for Adaptive Transversal Filters: Optimality and Time-Variance

This thesis presents a unified theory for the design and analysis of recursive algorithms for the adaptation of transversal digital filters. First, the widely used error minimization approach to algorithm design is investigated and it is shown not to allow a coherent derivation of practical algorithms from an optimality criterion. The reason is found in the incompatibility of the assumption of a time-invariant application environment for the optimality definition and of the practical demand on the adaptive filter for tracking in time-varying environments. The present proposal for a deterministic approach to algorithm design goes beyond mere error minimization in that the time variation of the coefficients of the adaptive filter is included as well. In the sequel a wealth of algorithms is shown to fulfil this novel unified description and several algorithm modifications, which often appear ad hoc, are derived ...

Kubin, Gernot — Vienna University of Technology


Feedback Delay Networks in Artificial Reverberation and Reverberation Enhancement

In today's audio production and reproduction as well as in music performance practices it has become common practice to alter reverberation artificially through electronics or electro-acoustics. For music productions, radio plays, and movie soundtracks, the sound is often captured in small studio spaces with little to no reverberation to save real estate and to ensure a controlled environment such that the artistically intended spatial impression can be added during post-production. Spatial sound reproduction systems require flexible adjustment of artificial reverberation to the diffuse sound portion to help the reconstruction of the spatial impression. Many modern performance spaces are multi-purpose, and the reverberation needs to be adjustable to the desired performance style. Employing electro-acoustic feedback, also known as Reverberation Enhancement Systems (RESs), it is possible to extend the physical to the desired reverberation. These examples demonstrate a wide range of applications ...

Schlecht, Sebastian Jiro — Friedrich-Alexander-Universität Erlangen-Nürnberg


Spatio-Temporal Speech Enhancement in Adverse Acoustic Conditions

Never before has speech been captured as often by electronic devices equipped with one or multiple microphones, serving a variety of applications. It is the key aspect in digital telephony, hearing devices, and voice-driven human-to-machine interaction. When speech is recorded, the microphones also capture a variety of further, undesired sound components due to adverse acoustic conditions. Interfering speech, background noise and reverberation, i.e. the persistence of sound in a room after excitation caused by a multitude of reflections on the room enclosure, are detrimental to the quality and intelligibility of target speech as well as the performance of automatic speech recognition. Hence, speech enhancement aiming at estimating the early target-speech component, which contains the direct component and early reflections, is crucial to nearly all speech-related applications presently available. In this thesis, we compare, propose and evaluate existing and novel approaches ...

Dietzen, Thomas — KU Leuven


Acoustic echo reduction for multiple loudspeakers and microphones: Complexity reduction and convergence enhancement

Modern devices such as mobile phones, tablets or smart speakers are commonly equipped with several loudspeakers and microphones. If, for instance, one employs such a device for hands-free communication applications, the signals that are reproduced by the loudspeakers are propagated through the room and are inevitably acquired by the microphones. If no processing is applied, the participants in the far-end room receive delayed reverberated replicas of their own voice, which strongly degrades both speech intelligibility and user comfort. In order to prevent that so-called acoustic echoes are transmitted back to the far-end room, acoustic echo cancelers are commonly employed. The latter make use of adaptive filtering techniques to identify the propagation paths between loudspeakers and microphones. The estimated propagation paths are then employed to compute acoustic echo estimates, which are finally subtracted from the signals acquired by the microphones. In ...

Luis Valero, Maria — International Audio Laboratories Erlangen


Online Machine Learning for Graph Topology Identi fication from Multiple Time Series

High dimensional time series data are observed in many complex systems. In networked data, some of the time series are influenced by other time series. Identifying these relations encoded in a graph structure or topology among the time series is of paramount interest in certain applications since the identifi ed structure can provide insights about the underlying system and can assist in inference tasks. In practice, the underlying topology is usually sparse, that is, not all the participating time series influence each other. The goal of this dissertation pertains to study the problem of sparse topology identi fication under various settings. Topology identi fication from time series is a challenging task. The first major challenge in topology identi fication is that the assumption of static topology does not hold always in practice since most of the practical systems are evolving ...

Zaman, Bakht — University of Agder, Norway


Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Equalization and echo cancellation in DMT-based systems

Digital subscriber line (DSL) is a technology to provide broadband communications over the existing twisted pair telephone network. The signals received by a DSL modem are typically corrupted by channel induced noise, background noise, radio frequeny interference (RFI) and undesired echo. In this thesis we focus on the design of digital signal processing algorithms to improve the bit rate and/or the loop reach of current and future DSL systems. Furthermore, in the proposed algorithms we aim at keeping the hardware cost as low as possible. The transmission format of many DSL systems is based on discrete multitone modulation (DMT). To combat channel induced noise, DMT-based receivers perform an equalization step by means of a time domain equalizer (TEQ) and a one-tap frequency domain equalizer (FEQ) per used tone. Despite the variety of TEQ design methods presented in the literature, we ...

Ysebaert, Geert — Katholieke Universiteit Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.