Biosignal processing and activity modeling for multimodal human activity recognition

This dissertation's primary goal was to systematically study human activity recognition and enhance its performance by advancing human activities' sequential modeling based on HMM-based machine learning. Driven by these purposes, this dissertation has the following major contributions: The proposal of our HAR research pipeline that guides the building of a robust wearable end-to-end HAR system and the implementation of the recording and recognition software Activity Signal Kit (ASK) according to the pipeline; Collecting several datasets of multimodal biosignals from over 25 subjects using the self-implemented ASK software and implementing an easy mechanism to segment and annotate the data; The comprehensive research on the offline HAR system based on the recorded datasets and the implementation of an end-to-end real-time HAR system; A novel activity modeling method for HAR, which partitions the human activity into a sequence of shared, meaningful, and activity ...

Liu, Hui — University of Bremen


Predictive modelling and deep learning for quantifying human health

Machine learning and deep learning techniques have emerged as powerful tools for addressing complex challenges across diverse domains. These methodologies are powerful because they extract patterns and insights from large and complex datasets, automate decision-making processes, and continuously improve over time. They enable us to observe and quantify patterns in data that a normal human would not be able to capture, leading to deeper insights and more accurate predictions. This dissertation presents two research papers that leverage these methodologies to tackle distinct yet interconnected problems in neuroimaging and computer vision for the quantification of human health. The first investigation, "Age prediction using resting-state functional MRI," addresses the challenge of understanding brain aging. By employing the Least Absolute Shrinkage and Selection Operator (LASSO) on resting-state functional MRI (rsfMRI) data, we identify the most predictive correlations related to brain age. Our study, ...

Chang Jose — National Cheng Kung University


Machine Learning-Aided Monitoring and Prediction of Respiratory and Neurodegenerative Diseases Using Wearables

This thesis focuses on wearables for health status monitoring, covering applications aimed at emergency solutions to the COVID-19 pandemic and aging society. The methods of ambient assisted living (AAL) are presented for the neurodegenerative disease Parkinson’s disease (PD), facilitating ’aging in place’ thanks to machine learning and around wearables - solutions of mHealth. Furthermore, the approaches using machine learning and wearables are discussed for early-stage COVID-19 detection, with encouraging accuracy. Firstly, a publicly available dataset containing COVID-19, influenza, and healthy control data was reused for research purposes. The solution presented in this thesis is considering the classification problem and outperformed the state-of-the-art methods, whereas the original paper introduced just anomaly detection and not shown the specificity of the created models. The proposed model in the thesis for early detection of COVID-19 achieved 78 % for the k-NN classifier. Moreover, a ...

Justyna Skibińska — Brno University of Technology & Tampere University


Central and peripheral mechanisms: a multimodal approach to understanding and restoring human motor control

All human actions involve motor control. Even the simplest movement requires the coordinated recruitment of many muscles, orchestrated by neuronal circuits in the brain and the spinal cord. As a consequence, lesions affecting the central nervous system, such as stroke, can lead to a wide range of motor impairments. While a certain degree of recovery can often be achieved by harnessing the plasticity of the motor hierarchy, patients typically struggle to regain full motor control. In this context, technology-assisted interventions offer the prospect of intense, controllable and quantifiable motor training. Yet, clinical outcomes remain comparable to conventional approaches, suggesting the need for a paradigm shift towards customized knowledge-driven treatments to fully exploit their potential. In this thesis, we argue that a detailed understanding of healthy and impaired motor pathways can foster the development of therapies optimally engaging plasticity. To this ...

Kinany, Nawal — Ecole Polytechnique Fédérale de Lausanne (EPFL)


New approaches for EEG signal processing: Artifact EOG removal by ICA-RLS scheme and Tracks extraction method

Localizing the bioelectric phenomena originating from the cerebral cortex and evoked by auditory and somatosensory stimuli are clear objectives to both understand how the brain works and to recognize different pathologies. Diseases such as Parkinson's, Alzheimer's, schizophrenia and epilepsy are intensively studied to find a cure or accurate diagnosis. Epilepsy is considered the disease with major prevalence within disorders with neurological origin. The recurrent and sudden incidence of seizures can lead to dangerous and possibly life-threatening situations. Since disturbance of consciousness and sudden loss of motor control often occur without any warning, the ability to predict epileptic seizures would reduce patients' anxiety, thus considerably improving quality of life and safety. The common procedure for epilepsy seizure detection is based on brain activity monitorization via electroencephalogram (EEG) data. This process consumes a lot of time, especially in the case of long ...

Carlos Guerrero-Mosquera — University Carlos III of Madrid


Multi-channel EMG pattern classification based on deep learning

In recent years, a huge body of data generated by various applications in domains like social networks and healthcare have paved the way for the development of high performance models. Deep learning has transformed the field of data analysis by dramatically improving the state of the art in various classification and prediction tasks. Combined with advancements in electromyography it has given rise to new hand gesture recognition applications, such as human computer interfaces, sign language recognition, robotics control and rehabilitation games. The purpose of this thesis is to develop novel methods for electromyography signal analysis based on deep learning for the problem of hand gesture recognition. Specifically, we focus on methods for data preparation and developing accurate models even when few data are available. Electromyography signals are in general one-dimensional time-series with a rich frequency content. Various feature sets have ...

Tsinganos, Panagiotis — University of Patras, Greece - Vrije Universiteit Brussel, Belgium


Automated detection of epileptic seizures in pediatric patients based on accelerometry and surface electromyography

Epilepsy is one of the most common neurological diseases that manifests in repetitive epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. There is no cure for epilepsy and sometimes even medication and other therapies, like surgery, vagus nerve stimulation or ketogenic diet, do not control the number of seizures. In that case, long-term (home) monitoring and automatic seizure detection would enable the tracking of the evolution of the disease and improve objective insight in any responses to medical interventions or changes in medical treatment. Especially during the night, supervision is reduced; hence a large number of seizures is missed. In addition, an alarm should be integrated into the automated seizure detection algorithm for severe seizures in order to help the ...

Milošević, Milica — KU Leuven


Speech Modeling and Robust Estimation for Diagnosis of Parkinson's Disease

According to the Parkinson’s Foundation, more than 10 million people world- wide suffer from Parkinson’s disease (PD). The common symptoms are tremor, muscle rigidity and slowness of movement. There is no cure available cur- rently, but clinical intervention can help alleviate the symptoms significantly. Recently, it has been found that PD can be detected and telemonitored by voice signals, such as sustained phonation /a/. However, the voiced-based PD detector suffers from severe performance degradation in adverse envi- ronments, such as noise, reverberation and nonlinear distortion, which are common in uncontrolled settings. In this thesis, we focus on deriving speech modeling and robust estima- tion algorithms capable of improving the PD detection accuracy in adverse environments. Robust estimation algorithms using parametric modeling of voice signals are proposed. We present both segment-wise and sample-wise robust pitch tracking algorithms using the harmonic model. ...

Shi, Liming — Aalborg University


Probabilistic modeling for sensor fusion with inertial measurements

In recent years, inertial sensors have undergone major developments. The quality of their measurements has improved while their cost has decreased, leading to an increase in availability. They can be found in stand-alone sensor units, so-called inertial measurement units, but are nowadays also present in for instance any modern smartphone, in Wii controllers and in virtual reality headsets. The term inertial sensor refers to the combination of accelerometers and gyroscopes. These measure the external specific force and the angular velocity, respectively. Integration of their measurements provides information about the sensor’s position and orientation. However, the position and orientation estimates obtained by simple integration suffer from drift and are therefore only accurate on a short time scale. In order to improve these estimates, we combine the inertial sensors with additional sensors and models. To combine these different sources of information, also ...

Kok, Manon — Linköping University


Vision-based human activities recognition in supervised or assisted environment

Human Activity Recognition HAR has been a hot research topic in the last decade due to its wide range of applications. Indeed, it has been the basis for implementa- tion of many computer vision applications, home security, video surveillance, and human-computer interaction. We intend by HAR, tools, and systems allowing to detect and recognize actions performed by individuals. With the considerable progress made in sensing technologies, HAR systems shifted from wearable and ambient-based to vision-based. This motivated the researchers to propose a large mass of vision-based solutions. From another perspective, HAR plays an impor- tant role in the health care sector and gets involved in the construction of fall detection systems and many smart home-related systems. Fall detection FD con- sists in identifying the occurrence of falls among other daily life activities. This is essential because falling is one of ...

Beddiar Djamila Romaissa — Université De Larbi Ben M’hidi Oum EL Bouaghi, Algeria


Selected Topics in Inertial and Visual Sensor Fusion: Calibration, Observability Analysis and Applications

Recent improvements in the development of inertial and visual sensors allow building small, lightweight, and cheap motion capture systems, which are becoming a standard feature of smartphones and personal digital assistants. This dissertation describes developments of new motion sensing strategies using the inertial and inertial-visual sensors. The thesis contributions are presented in two parts. The first part focuses mainly on the use of inertial measurement units. First, the problem of sensor calibration is addressed and a low-cost and accurate method to calibrate the accelerometer cluster of this unit is proposed. The method is based on the maximum likelihood estimation framework, which results in a minimum variance unbiased estimator.Then using the inertial measurement unit, a probabilistic user-independent method is proposed for pedestrian activity classification and gait analysis.The work targets two groups of applications including human activity classificationand joint human activity and ...

Panahandeh Ghazaleh — KTH Royal Institute of Technology


Biomechanics based analysis of sleep

The fact that a third of a human life is spent in a bed indicates the essential character of sleep. While some people might opt voluntarily for sleep deprivation, others don’t get to choose. Their healthy pattern of sleep is disrupted due to sleep disorders such as sleep apnea, insomnia and restless legs syndrome. Most clinical diagnoses revolve around complaints of excessive daytime sleepiness. People usually wait quite long however before contacting professional help, and might only do so when complaints have gone from minor to serious. It can be argued that people with minor complaints will have negligible compliance to rather obtrusive therapies, and should not be treated with pharmaceuticals. However, cognitive and behavioral therapy has proven its effectiveness for clinically diagnosed patients in different domains, and might thus also enhance the quality of life for people with minor ...

Willemen, Tim — KU Leuven


Motion Analysis and Modeling for Activity Recognition and 3-D Animation based on Geometrical and Video Processing Algorithms

The analysis of audiovisual data aims at extracting high level information, equivalent with the one(s) that can be extracted by a human. It is considered as a fundamental, unsolved (in its general form) problem. Even though the inverse problem, the audiovisual (sound and animation) synthesis, is judged easier than the previous, it remains an unsolved problem. The systematic research on these problems yields solutions that constitute the basis for a great number of continuously developing applications. In this thesis, we examine the two aforementioned fundamental problems. We propose algorithms and models of analysis and synthesis of articulated motion and undulatory (snake) locomotion, using data from video sequences. The goal of this research is the multilevel information extraction from video, like object tracking and activity recognition, and the 3-D animation synthesis in virtual environments based on the results of analysis. An ...

Panagiotakis, Costas — University of Crete


Advances in unobtrusive monitoring of sleep apnea using machine learning

Obstructive sleep apnea (OSA) is among the most prevalent sleep disorders, which is estimated to affect 6 %−19 % of women and 13 %−33 % of men. Besides daytime sleepiness, impaired cognitive functioning and an increased risk for accidents, OSA may lead to obesity, diabetes and cardiovascular diseases (CVD) on the long term. Its prevalence is only expected to rise, as it is linked to aging and excessive body fat. Nevertheless, many patients remain undiagnosed and untreated due to the cumbersome clinical diagnostic procedures. For this, the patient is required to sleep with an extensive set of body attached sensors. In addition, the recordings only provide a single night perspective on the patient in an uncomfortable, and often unknown, environment. Thus, large scale monitoring at home is desired with comfortable sensors, which can stay in place for several nights. To ...

Huysmans, Dorien — KU Leuven


Deep Learning for Event Detection, Sequence Labelling and Similarity Estimation in Music Signals

When listening to music, some humans can easily recognize which instruments play at what time or when a new musical segment starts, but cannot describe exactly how they do this. To automatically describe particular aspects of a music piece – be it for an academic interest in emulating human perception, or for practical applications –, we can thus not directly replicate the steps taken by a human. We can, however, exploit that humans can easily annotate examples, and optimize a generic function to reproduce these annotations. In this thesis, I explore solving different music perception tasks with deep learning, a recent branch of machine learning that optimizes functions of many stacked nonlinear operations – referred to as deep neural networks – and promises to obtain better results or require less domain knowledge than more traditional techniques. In particular, I employ ...

Schlüter, Jan — Department of Computational Perception, Johannes Kepler University Linz

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.