Robust Network Topology Inference and Processing of Graph Signals (2022)
Abstract / truncated to 115 words
The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting ...
graph signal processing – robust graph signal processing – graph learning – GNN
Information
- Author
- Rey, Samuel
- Institution
- King Juan Carlos University
- Supervisor
- Publication Year
- 2022
- Upload Date
- Jan. 19, 2024
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.