## Online Machine Learning for Inference from Multivariate Time-series (2023)

Online Machine Learning for Graph Topology Identification from Multiple Time Series

High dimensional time series data are observed in many complex systems. In networked data, some of the time series are influenced by other time series. Identifying these relations encoded in a graph structure or topology among the time series is of paramount interest in certain applications since the identifi ed structure can provide insights about the underlying system and can assist in inference tasks. In practice, the underlying topology is usually sparse, that is, not all the participating time series influence each other. The goal of this dissertation pertains to study the problem of sparse topology identi fication under various settings. Topology identi fication from time series is a challenging task. The first major challenge in topology identi fication is that the assumption of static topology does not hold always in practice since most of the practical systems are evolving ...

Zaman, Bakht — University of Agder, Norway

Robust Network Topology Inference and Processing of Graph Signals

The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting graph. Ignoring the presence of perturbations, along with the couplings between the errors in the signal and the errors in their support, can drastically hinder ...

Rey, Samuel — King Juan Carlos University

Distributed Stochastic Optimization in Non-Differentiable and Non-Convex Environments

The first part of this dissertation considers distributed learning problems over networked agents. The general objective of distributed adaptation and learning is the solution of global, stochastic optimization problems through localized interactions and without information about the statistical properties of the data. Regularization is a useful technique to encourage or enforce structural properties on the resulting solution, such as sparsity or constraints. A substantial number of regularizers are inherently non-smooth, while many cost functions are differentiable. We propose distributed and adaptive strategies that are able to minimize aggregate sums of objectives. In doing so, we exploit the structure of the individual objectives as sums of differentiable costs and non-differentiable regularizers. The resulting algorithms are adaptive in nature and able to continuously track drifts in the problem; their recursions, however, are subject to persistent perturbations arising from the stochastic nature of ...

Vlaski, Stefan — University of California, Los Angeles

Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo ...

Dahlin, Johan — Linköping University

Bayesian data fusion for distributed learning

This dissertation explores the intersection of data fusion, federated learning, and Bayesian methods, with a focus on their applications in indoor localization, GNSS, and image processing. Data fusion involves integrating data and knowledge from multiple sources. It becomes essential when data is only available in a distributed fashion or when different sensors are used to infer a quantity of interest. Data fusion typically includes raw data fusion, feature fusion, and decision fusion. In this thesis, we will concentrate on feature fusion. Distributed data fusion involves merging sensor data from different sources to estimate an unknown process. Bayesian framework is often used because it can provide an optimal and explainable feature by preserving the full distribution of the unknown given the data, called posterior, over the estimated process at each agent. This allows for easy and recursive merging of sensor data ...

Peng Wu — Northeastern University

Heart rate variability : linear and nonlinear analysis with applications in human physiology

Cardiovascular diseases are a growing problem in today’s society. The World Health Organization (WHO) reported that these diseases make up about 30% of total global deaths and that heart diseases have no geographic, gender or socioeconomic boundaries. Therefore, detecting cardiac irregularities early-stage and a correct treatment are very important. However, this requires a good physiological understanding of the cardiovascular system. The heart is stimulated electrically by the brain via the autonomic nervous system, where sympathetic and vagal pathways are always interacting and modulating heart rate. Continuous monitoring of the heart activity is obtained by means of an ElectroCardioGram (ECG). Studying the fluctuations of heart beat intervals over time reveals a lot of information and is called heart rate variability (HRV) analysis. A reduction of HRV has been reported in several cardiological and noncardiological diseases. Moreover, HRV also has a prognostic ...

Vandeput, Steven — KU Leuven

Single-channel source separation for radio-frequency (RF) systems is a challenging problem relevant to key applications, including wireless communications, radar, and spectrum monitoring. This thesis addresses the challenge by focusing on data-driven approaches for source separation, leveraging datasets of sample realizations when source models are not explicitly provided. To this end, deep learning techniques are employed as function approximations for source separation, with models trained using available data. Two problem abstractions are studied as benchmarks for our proposed deep-learning approaches. Through a simplified problem involving Orthogonal Frequency Division Multiplexing (OFDM), we reveal the limitations of existing deep learning solutions and suggest modifications that account for the signal modality for improved performance. Further, we study the impact of time shifts on the formulation of an optimal estimator for cyclostationary Gaussian time series, serving as a performance lower bound for evaluating data-driven methods. ...

Lee, Cheng Feng Gary — Massachusetts Institute of Technology

Particle Filters and Markov Chains for Learning of Dynamical Systems

Sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) methods provide computational tools for systematic inference and learning in complex dynamical systems, such as nonlinear and non-Gaussian state-space models. This thesis builds upon several methodological advances within these classes of Monte Carlo methods. Particular emphasis is placed on the combination of SMC and MCMC in so called particle MCMC algorithms. These algorithms rely on SMC for generating samples from the often highly autocorrelated state-trajectory. A specific particle MCMC algorithm, referred to as particle Gibbs with ancestor sampling (PGAS), is suggested. By making use of backward sampling ideas, albeit implemented in a forward-only fashion, PGAS enjoys good mixing even when using seemingly few particles in the underlying SMC sampler. This results in a computationally competitive particle MCMC algorithm. As illustrated in this thesis, PGAS is a useful tool for both ...

Lindsten, Fredrik — Linköping University

Contributions to signal analysis and processing using compressed sensing techniques

Chapter 2 contains a short introduction to the fundamentals of compressed sensing theory, which is the larger context of this thesis. We start with introducing the key concepts of sparsity and sparse representations of signals. We discuss the central problem of compressed sensing, i.e. how to adequately recover sparse signals from a small number of measurements, as well as the multiple formulations of the reconstruction problem. A large part of the chapter is devoted to some of the most important conditions necessary and/or sufficient to guarantee accurate recovery. The aim is to introduce the reader to the basic results, without the burden of detailed proofs. In addition, we also present a few of the popular reconstruction and optimization algorithms that we use throughout the thesis. Chapter 3 presents an alternative sparsity model known as analysis sparsity, that offers similar recovery ...

Cleju, Nicolae — "Gheorghe Asachi" Technical University of Iasi

Transformation methods in signal processing

This dissertation is concerned with the application of the theory of rational functions in signal processing. The PhD thesis summarizes the corresponding results of the author’s research. Since the systems of rational functions are defined by the collection of inverse poles with multiplicities, the following parameters should be determined: the number, the positions and the multiplicities of the inverse poles. Therefore, we develop the hyperbolic variant of the so-called Nelder–Mead and the particle swarm optimization algorithm. In addition, the latter one is integrated into a more general multi-dimensional framework. Furthermore, we perform a detailed stability and error analysis of these methods. We propose an electrocardiogram signal generator based on spline interpolation. It turns to be an efficient tool for testing and evaluating signal models, filtering techniques, etc. In this thesis, the synthesized heartbeats are used to test the diagnostic distortion ...

Kovács, Péter — Eötvös L. University, Budapest, Hungary

Improving Security and Privacy in Biometric Systems

The achievement of perfect security is out of the question. Even if we are not yet aware of them, every security aimed technology has weaknesses which attackers can exploit in order to circumvent the system. We should hence direct our efforts to the development of applications whose security level make it infeasible for computationally bound attackers to break the systems. This Thesis is focused on improving the security and privacy provided by biometric systems. With the increased need for reliable and automatic identity verification, biometrics have emerged in the last decades as a pushing alternative to traditional authentication methods. Certainly, biometrics are very attractive and useful for the general public: forget about PINs and passwords, you are your own key. However, the wide deployment of biometric recognition systems at both large-scale applications (e.g., border management at European level or national ...

Gomez-Barrero, Marta — Universidad Autonoma de Madrid

Gaussian Process Modelling for Audio Signals

Audio signals are characterised and perceived based on how their spectral make-up changes with time. Uncovering the behaviour of latent spectral components is at the heart of many real-world applications involving sound, but is a highly ill-posed task given the infinite number of ways any signal can be decomposed. This motivates the use of prior knowledge and a probabilistic modelling paradigm that can characterise uncertainty. This thesis studies the application of Gaussian processes to audio, which offer a principled non-parametric way to specify probability distributions over functions whilst also encoding prior knowledge. Along the way we consider what prior knowledge we have about sound, the way it behaves, and the way it is perceived, and write down these assumptions in the form of probabilistic models. We show how Bayesian time-frequency analysis can be reformulated as a spectral mixture Gaussian process, ...

William Wilkinson — Queen Mary University of London

Domain-informed signal processing with application to analysis of human brain functional MRI data

Standard signal processing techniques are implicitly based on the assumption that the signal lies on a regular, homogeneous domain. In practice, however, many signals lie on an irregular or inhomogeneous domain. An application area where data are naturally defined on an irregular or inhomogeneous domain is human brain neuroimaging. The goal in neuroimaging is to map the structure and function of the brain using imaging techniques. In particular, functional magnetic resonance imaging (fMRI) is a technique that is conventionally used in non-invasive probing of human brain function. This doctoral dissertation deals with the development of signal processing schemes that adapt to the domain of the signal. It consists of four papers that in different ways deal with exploiting knowledge of the signal domain to enhance the processing of signals. In each paper, special focus is given to the analysis of ...

Behjat, Hamid — Lund University

Speech Enhancement Using Nonnegative Matrix Factorization and Hidden Markov Models

Reducing interference noise in a noisy speech recording has been a challenging task for many years yet has a variety of applications, for example, in handsfree mobile communications, in speech recognition, and in hearing aids. Traditional single-channel noise reduction schemes, such as Wiener filtering, do not work satisfactorily in the presence of non-stationary background noise. Alternatively, supervised approaches, where the noise type is known in advance, lead to higher-quality enhanced speech signals. This dissertation proposes supervised and unsupervised single-channel noise reduction algorithms. We consider two classes of methods for this purpose: approaches based on nonnegative matrix factorization (NMF) and methods based on hidden Markov models (HMM). The contributions of this dissertation can be divided into three main (overlapping) parts. First, we propose NMF-based enhancement approaches that use temporal dependencies of the speech signals. In a standard NMF, the important temporal ...

Mohammadiha, Nasser — KTH Royal Institute of Technology

In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime ofWSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the ...

Moragrega, Ana — Universitat Politecnica de Catalunya

The current layout is optimized for **mobile
phones**. Page previews, thumbnails, and full abstracts
will remain hidden until the browser window grows in width.

The current layout is optimized for **tablet
devices**. Page previews and some thumbnails will remain
hidden until the browser window grows in width.