Signal Processing Algorithms for EEG-based Auditory Attention Decoding

One in five experiences hearing loss. The World Health Organization estimates that this number will increase to one in four in 2050. Luckily, effective hearing devices such as hearing aids and cochlear implants exist with advanced speaker enhancement algorithms that can significantly improve the quality of life of people suffering from hearing loss. State-of-the-art hearing devices, however, underperform in a so-called `cocktail party' scenario, when multiple persons are talking simultaneously (such as at a family dinner or reception). In such a situation, the hearing device does not know which speaker the user intends to attend to and thus which speaker to enhance and which other ones to suppress. Therefore, a new problem arises in cocktail party problems: determining which speaker a user is attending to, referred to as the auditory attention decoding (AAD) problem. The problem of selecting the attended ...

Geirnaert, Simon — KU Leuven


Cognitive-driven speech enhancement using EEG-based auditory attention decoding for hearing aid applications

Identifying the target speaker in hearing aid applications is an essential ingredient to improve speech intelligibility. Although several speech enhancement algorithms are available to reduce background noise or to perform source separation in multi-speaker scenarios, their performance depends on correctly identifying the target speaker to be enhanced. Recent advances in electroencephalography (EEG) have shown that it is possible to identify the target speaker which the listener is attending to using single-trial EEG-based auditory attention decoding (AAD) methods. However, in realistic acoustic environments the AAD performance is influenced by undesired disturbances such as interfering speakers, noise and reverberation. In addition, it is important for real-world hearing aid applications to close the AAD loop by presenting on-line auditory feedback. This thesis deals with the problem of identifying and enhancing the target speaker in realistic acoustic environments based on decoding the auditory attention ...

Aroudi, Ali — University of Oldenburg, Germany


Tensor-based blind source separation for structured EEG-fMRI data fusion

A complex physical system like the human brain can only be comprehended by the use of a combination of various medical imaging techniques, each of which shed light on only a specific aspect of the neural processes that take place beneath the skull. Electroencephalography (EEG) and functional magnetic resonance (fMRI) are two such modalities, which enable the study of brain (dys)function. While the EEG is measured with a limited set of scalp electrodes which record rapid electrical changes resulting from neural activity, fMRI offers a superior spatial resolution at the expense of only picking up slow fluctuations of oxygen concentration that takes place near active brain cells. Hence, combining these very complementary modalities is an appealing, but complicated task due to their heterogeneous nature. In this thesis, we devise advanced signal processing techniques which integrate the multimodal data stemming from ...

Van Eyndhoven, Simon — KU Leuven


Compressed Sensing: Novel Applications, Challenges, and Techniques

Compressed Sensing (CS) is a widely used technique for efficient signal acquisition, in which a very small number of (possibly noisy) linear measurements of an unknown signal vector are taken via multiplication with a designed ‘sensing matrix’ in an application-specific manner, and later recovered by exploiting the sparsity of the signal vector in some known orthonormal basis and some special properties of the sensing matrix which allow for such recovery. We study three new applications of CS, each of which poses a unique challenge in a different aspect of it, and propose novel techniques to solve them, advancing the field of CS. Each application involves a unique combination of realistic assumptions on the measurement noise model and the signal, and a unique set of algorithmic challenges. We frame Pooled RT-PCR Testing for COVID-19 – wherein RT-PCR (Reverse Transcription Polymerase Chain ...

Ghosh, Sabyasachi — Department of Computer Science and Engineering, Indian Institute of Technology Bombay


Advanced models for monitoring stress and development trajectories in premature infants

This thesis focuses on the design of various automatic signal processing algorithms to extract information from physiological signals of preterm infants. Overall, the aim was to improve the neurodevelopmental outcome of the neonate. More specifically, three main research objectives were carried out. The first objective was to describe the maturation of neonates during their stay in the neonatal intensive care unit. The second objective was to assess the stress and pain in premature infants and their impact on the development of neonates. The third objective was to predict developmental disabilities, such as autism. The first part of this thesis presents an extensive overview of various developmental models to describe the maturation of premature infants. Three main strategies were proposed. The first strategy proposed an investigation of EEG connectivity networks. A variety of functional and effective connectivity methods were combined with ...

Lavanga, Mario — KU Leuven


Short-length Low-density Parity-check Codes: Construction and Decoding Algorithms

Error control coding is an essential part of modern communications systems. LDPC codes have been demonstrated to offer performance near the fundamental limits of channels corrupted by random noise. Optimal maximum likelihood decoding of LDPC codes is too complex to be practically useful even at short block lengths and so a graph-based message passing decoder known as the belief propagation algorithm is used instead. In fact, on graphs without closed paths known as cycles the iterative message passing decoding is known to be optimal and may converge in a single iteration, although identifying the message update schedule which allows single-iteration convergence is not trivial. At finite block lengths graphs without cycles have poor minimum distance properties and perform poorly even under optimal decoding. LDPC codes with large block length have been demonstrated to offer performance close to that predicted for ...

Healy, Cornelius Thomas — University of York


Automated detection of epileptic seizures in pediatric patients based on accelerometry and surface electromyography

Epilepsy is one of the most common neurological diseases that manifests in repetitive epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. There is no cure for epilepsy and sometimes even medication and other therapies, like surgery, vagus nerve stimulation or ketogenic diet, do not control the number of seizures. In that case, long-term (home) monitoring and automatic seizure detection would enable the tracking of the evolution of the disease and improve objective insight in any responses to medical interventions or changes in medical treatment. Especially during the night, supervision is reduced; hence a large number of seizures is missed. In addition, an alarm should be integrated into the automated seizure detection algorithm for severe seizures in order to help the ...

Milošević, Milica — KU Leuven


New approaches for EEG signal processing: Artifact EOG removal by ICA-RLS scheme and Tracks extraction method

Localizing the bioelectric phenomena originating from the cerebral cortex and evoked by auditory and somatosensory stimuli are clear objectives to both understand how the brain works and to recognize different pathologies. Diseases such as Parkinson's, Alzheimer's, schizophrenia and epilepsy are intensively studied to find a cure or accurate diagnosis. Epilepsy is considered the disease with major prevalence within disorders with neurological origin. The recurrent and sudden incidence of seizures can lead to dangerous and possibly life-threatening situations. Since disturbance of consciousness and sudden loss of motor control often occur without any warning, the ability to predict epileptic seizures would reduce patients' anxiety, thus considerably improving quality of life and safety. The common procedure for epilepsy seizure detection is based on brain activity monitorization via electroencephalogram (EEG) data. This process consumes a lot of time, especially in the case of long ...

Carlos Guerrero-Mosquera — University Carlos III of Madrid


Deep Learning for Audio Effects Modeling

Audio effects modeling is the process of emulating an audio effect unit and seeks to recreate the sound, behaviour and main perceptual features of an analog reference device. Audio effect units are analog or digital signal processing systems that transform certain characteristics of the sound source. These transformations can be linear or nonlinear, time-invariant or time-varying and with short-term and long-term memory. Most typical audio effect transformations are based on dynamics, such as compression; tone such as distortion; frequency such as equalization; and time such as artificial reverberation or modulation based audio effects. The digital simulation of these audio processors is normally done by designing mathematical models of these systems. This is often difficult because it seeks to accurately model all components within the effect unit, which usually contains mechanical elements together with nonlinear and time-varying analog electronics. Most existing ...

Martínez Ramírez, Marco A — Queen Mary University of London


Multimodal epileptic seizure detection : towards a wearable solution

Epilepsy is one of the most common neurological disorders, which affects almost 1% of the population worldwide. Anti-epileptic drugs provide adequate treatment for about 70% of epilepsy patients. The remaining 30% of the patients continue to have seizures, which drastically affects their quality of life. In order to obtain efficacy measures of therapeutic interventions for these patients, an objective way to count and document seizures is needed. However, in an outpatient setting, one of the major problems is that seizure diaries kept by patients are unreliable. Automated seizure detection systems could help to objectively quantify seizures. Those detection systems are typically based on full scalp Electroencephalography (EEG). In an outpatient setting, full scalp EEG is of limited use because patients will not tolerate wearing a full EEG cap for long time periods during daily life. There is a need for ...

Vandecasteele, Kaat — KU Leuven


Design and applications of Filterbank structures implementing Reed-Solomon codes

In nowadays communication systems, error correction provides robust data transmission through imperfect (noisy) channels. Error correcting codes are a crucial component in most storage and communication systems – wired or wireless –, e.g. GSM, UMTS, xDSL, CD/DVD. At least as important as the data integrity issue is the recent realization that error correcting codes fundamentally change the trade-offs in system design. High-integrity, low redundancy coding can be applied to increase data rate, or battery life time or by reducing hardware costs, making it possible to enter mass market. When it comes to the design of error correcting codes and their properties, there are two main theories that play an important role in this work. Classical coding theory aims at finding the best code given an available block length. This thesis focuses on the ubiquitous Reed-Solomon codes, one of the major ...

Van Meerbergen, Geert — Katholieke Universiteit Leuven


Optimization of Positioning Capabilities in Wireless Sensor Networks: from power efficiency to medium access

In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime ofWSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the ...

Moragrega, Ana — Universitat Politecnica de Catalunya


Performance Analysis and Algorithm Design for Distributed Transmit Beamforming

Wireless sensor networks has been one of the major research topics in recent years because of its great potential for a wide range of applications. In some application scenarios, sensor nodes intend to report the sensing data to a far-field destination, which cannot be realized by traditional transmission techniques. Due to the energy limitations and the hardware constraints of sensor nodes, distributed transmit beamforming is considered as an attractive candidate for long-range communications in such scenarios as it can reduce energy requirement of each sen-sor node and extend the communication range. However, unlike conventional beamforming, which is performed by a centralized antenna array, distributed beamforming is performed by a virtual antenna array composed of randomly located sensor nodes, each of which has an independent oscillator. Sensor nodes have to coordinate with each other and adjust their transmitting signals to collaboratively ...

Song, Shuo — University of Edinburgh


Cochlear implant artifact suppression in EEG measurements

Cochlear implants (CIs) aim to restore hearing in severely to profoundly deaf adults, children and infants. Electrically evoked auditory steady-state responses (EASSRs) are neural responses to continuous modulated pulse trains, and can be objectively detected at the modulation frequency in the electro-encephalogram (EEG). EASSRs provide a number of advantages over other objective measures, because frequency-specific stimuli are used, because targeted brain areas can be studied, depending on the chosen stimulation parameters, and because they can objectively be detected using statistical methods. EASSRs can potentially be used to determine appropriate stimulation levels during CI fitting, without behavioral input from the subjects. Furthermore, speech understanding in noise varies greatly between CI subjects. EASSRs lend themselves well to study the underlying causes of this variability, such as the integrity of the electrode-neuron interface or changes in the auditory cortex following deafness and following ...

Deprez, Hanne — KU Leuven


Efficient Decoding Techniques for LDPC Codes

Efficient decoding techniques for LDPC codes are in demand, since these codes are included in many standards nowadays. Although the theoretical performance of LDPC codes is impressive, their practical implementation leads to problems like numerical inaccuracy, limited memory resources, etc. We investigate methods that are suited to reduce the decoding complexity while still keeping the loss in performance small. We aim to reduce the complexity using three approaches: simplification of the component decoders, restricting the message passing algorithm to binary variables and combining the LDPC decoder with other receiver tasks like demapping or multi-user detection. For the simplification of the component decoders, we analyze the min-sum algorithm and derive a theoretical framework which is used to explain previous heuristic approaches to improve the performance of this algorithm. Using this framework, we are able to modify the algorithm in order to ...

Lechner, G. — Vienna University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.