Deep Learning for Event Detection, Sequence Labelling and Similarity Estimation in Music Signals

When listening to music, some humans can easily recognize which instruments play at what time or when a new musical segment starts, but cannot describe exactly how they do this. To automatically describe particular aspects of a music piece – be it for an academic interest in emulating human perception, or for practical applications –, we can thus not directly replicate the steps taken by a human. We can, however, exploit that humans can easily annotate examples, and optimize a generic function to reproduce these annotations. In this thesis, I explore solving different music perception tasks with deep learning, a recent branch of machine learning that optimizes functions of many stacked nonlinear operations – referred to as deep neural networks – and promises to obtain better results or require less domain knowledge than more traditional techniques. In particular, I employ ...

Schlüter, Jan — Department of Computational Perception, Johannes Kepler University Linz


Automatic Transcription of Polyphonic Music Exploiting Temporal Evolution

Automatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving ...

Benetos, Emmanouil — Centre for Digital Music, Queen Mary University of London


Automated audio captioning with deep learning methods

In the audio research field, the majority of machine learning systems focus on recognizing a limited number of sound events. However, when a machine interacts with real data, it must be able to handle much more varied and complex situations. To tackle this problem, annotators use natural language, which allows any sound information to be summarized. Automated Audio Captioning (AAC) was introduced recently to develop systems capable of automatically producing a description of any type of sound in text form. This task concerns all kinds of sound events such as environmental, urban, domestic sounds, sound effects, music or speech. This type of system could be used by people who are deaf or hard of hearing, and could improve the indexing of large audio databases. In the first part of this thesis, we present the state of the art of the ...

Labbé, Étienne — IRIT


Sound Event Detection by Exploring Audio Sequence Modelling

Everyday sounds in real-world environments are a powerful source of information by which humans can interact with their environments. Humans can infer what is happening around them by listening to everyday sounds. At the same time, it is a challenging task for a computer algorithm in a smart device to automatically recognise, understand, and interpret everyday sounds. Sound event detection (SED) is the process of transcribing an audio recording into sound event tags with onset and offset time values. This involves classification and segmentation of sound events in the given audio recording. SED has numerous applications in everyday life which include security and surveillance, automation, healthcare monitoring, multimedia information retrieval, and assisted living technologies. SED is to everyday sounds what automatic speech recognition (ASR) is to speech and automatic music transcription (AMT) is to music. The fundamental questions in designing ...

[Pankajakshan], [Arjun] — Queen Mary University of London


Music Language Models for Automatic Music Transcription

Much like natural language, music is highly structured, with strong priors on the likelihood of note sequences. In automatic speech recognition (ASR), these priors are called language models, which are used in addition to acoustic models and participate greatly to the success of today's systems. However, in Automatic Music Transcription (AMT), ASR's musical equivalent, Music Language Models (MLMs) are rarely used. AMT can be defined as the process of extracting a symbolic representation from an audio signal, describing which notes were played at what time. In this thesis, we investigate the design of MLMs using recurrent neural networks (RNNs) and their use for AMT. We first look into MLM performance on a polyphonic prediction task. We observe that using musically-relevant timesteps results in desirable MLM behaviour, which is not reflected in usual evaluation metrics. We compare our model against benchmark ...

Ycart, Adrien — Queen Mary University of London


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki


An iterative, residual-based approach to unsupervised musical source separation in single-channel mixtures

This thesis concentrates on a major problem within audio signal processing, the separation of source signals from musical mixtures when only a single mixture channel is available. Source separation is the process by which signals that correspond to distinct sources are identified in a signal mixture and extracted from it. Producing multiple entities from a single one is an extremely underdetermined task, so additional prior information can assist in setting appropriate constraints on the solution set. The approach proposed uses prior information such that: (1) it can potentially be applied successfully to a large variety of musical mixtures, and (2) it requires minimal user intervention and no prior learning/training procedures (i.e., it is an unsupervised process). This system can be useful for applications such as remixing, creative effects, restoration and for archiving musical material for internet delivery, amongst others. Here, ...

Siamantas, Georgios — University of York


Some Contributions to Music Signal Processing and to Mono-Microphone Blind Audio Source Separation

For humans, the sound is valuable mostly for its meaning. The voice is spoken language, music, artistic intent. Its physiological functioning is highly developed, as well as our understanding of the underlying process. It is a challenge to replicate this analysis using a computer: in many aspects, its capabilities do not match those of human beings when it comes to speech or instruments music recognition from the sound, to name a few. In this thesis, two problems are investigated: the source separation and the musical processing. The first part investigates the source separation using only one Microphone. The problem of sources separation arises when several audio sources are present at the same moment, mixed together and acquired by some sensors (one in our case). In this kind of situation it is natural for a human to separate and to recognize ...

Schutz, Antony — Eurecome/Mobile


Advanced tools for ambulatory ECG and respiratory analysis

The electrocardiogram or ECG is a relatively easy-to-record signal that contains an enormous amount of potentially useful information. It is currently mostly being used for screening purposes. For example, pre-participation cardiovascular screening of young athletes has been endorsed by both scientific organisations and sporting governing bodies. A typical cardiac examination is taken in a hospital environment and lasts 10 seconds. This is often sufficient to detect major pathologies, yet this small sample size of the heart’s functioning can be deceptive when used to evaluate one’s general condition. A solution for this problem is to monitor the patient outside of the hospital, during a longer period of time. Due to the extension of the analysis period, the detection rate of cardiac events can be highly increased, compared to the cardiac exam in the hospital. However, it also increases the likelihood of ...

Moeyersons, Jonathan — KU Leuven


Scattering Transform for Playing Technique Recognition

Playing techniques are expressive elements in music performances that carry important information about music expressivity and interpretation. When displaying playing techniques in the time-frequency domain, we observe that each has a distinctive spectro-temporal pattern. Based on the patterns of regularity, we group commonly-used playing techniques into two families: pitch modulation-based techniques (PMTs) and pitch evolution-based techniques (PETs). The former are periodic modulations that elaborate on stable pitches, including vibrato, tremolo, trill, and flutter-tongue; while the latter contain monotonic pitch changes, such as acciaccatura, portamento, and glissando. In this thesis, we present a general framework based on the scattering transform for playing technique recognition. We propose two variants of the scattering transform, the adaptive scattering and the direction-invariant joint scattering. The former provides highly-compact representations that are invariant to pitch transpositions for representing PMTs. The latter captures the spectro-temporal patterns exhibited ...

Wang, Changhong — Queen Mary University of London


Adaptive filtering algorithms for acoustic echo cancellation and acoustic feedback control in speech communication applications

Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...

Gil-Cacho, Jose Manuel — KU Leuven


Direct Pore-based Identification For Fingerprint Matching Process

Fingerprint, is considered one of the most crucial scientific tools in solving criminal cases. This biometric feature is composed of unique and distinctive patterns found on the fingertips of each individual. With advancing technology and progress in forensic sciences, fingerprint analysis plays a vital role in forensic investigations and the analysis of evidence at crime scenes. The fingerprint patterns of each individual start to develop in early stagesof life and never change thereafter. This fact makes fingerprints an exceptional means of identification. In criminal cases, fingerprint analysis is used to decipher traces, evidence, and clues at crime scenes. These analyses not only provide insights into how a crime was committed but also assist in identifying the culprits or individuals involved. Computer-based fingerprint identification systems yield faster and more accurate results compared to traditional methods, making fingerprint comparisons in large databases ...

Vedat DELICAN, PhD — Istanbul Technical University


Mixed structural models for 3D audio in virtual environments

In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...

Geronazzo, Michele — University of Padova


Dialogue Enhancement and Personalization - Contributions to Quality Assessment and Control

The production and delivery of audio for television involve many creative and technical challenges. One of them is concerned with the level balance between the foreground speech (also referred to as dialogue) and the background elements, e.g., music, sound effects, and ambient sounds. Background elements are fundamental for the narrative and for creating an engaging atmosphere, but they can mask the dialogue, which the audience wishes to follow in a comfortable way. Very different individual factors of the people in the audience clash with the creative freedom of the content creators. As a result, service providers receive regular complaints about difficulties in understanding the dialogue because of too loud background sounds. While this has been a known issue for at least three decades, works analyzing the problem and up-to-date statics were scarce before the contributions in this work. Enabling the ...

Torcoli, Matteo — Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)


Decompositions Parcimonieuses Structurees: Application a la presentation objet de la musique

The amount of digital music available both on the Internet and by each listener has considerably raised for about ten years. The organization and the accessibillity of this amount of data demand that additional informations are available, such as artist, album and song names, musical genre, tempo, mood or other symbolic or semantic attributes. Automatic music indexing has thus become a challenging research area. If some tasks are now correctly handled for certain types of music, such as automatic genre classification for stereotypical music, music instrument recoginition on solo performance and tempo extraction, others are more difficult to perform. For example, automatic transcription of polyphonic signals and instrument ensemble recognition are still limited to some particular cases. The goal of our study is not to obain a perfect transcription of the signals and an exact classification of all the instruments ...

Leveau, Pierre — Universite Pierre et Marie Curie, Telecom ParisTech

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.