Voice biometric system security: Design and analysis of countermeasures for replay attacks (2020)
Vulnerabilities and Attack Protection in Security Systems Based on Biometric Recognition
Absolute security does not exist: given funding, willpower and the proper technology, every security system can be compromised. However, the objective of the security community should be to develop such applications that the funding, the will, and the resources needed by the attacker to crack the system prevent him from attempting to do so. This Thesis is focused on the vulnerability assessment of biometric systems. Although being relatively young compared to other mature and long-used security technologies, biometrics have emerged in the last decade as a pushing alternative for applications where automatic recognition of people is needed. Certainly, biometrics are very attractive and useful for the final user: forget about PINs and passwords, you are your own key. However, we cannot forget that as any technology aimed to provide a security service, biometric systems are exposed to external attacks which ...
Javier Galbally — Universidad Autonoma de Madrid
Deep learning for semantic description of visual human traits
The recent progress in artificial neural networks (rebranded as “deep learning”) has significantly boosted the state-of-the-art in numerous domains of computer vision offering an opportunity to approach the problems which were hardly solvable with conventional machine learning. Thus, in the frame of this PhD study, we explore how deep learning techniques can help in the analysis of one the most basic and essential semantic traits revealed by a human face, namely, gender and age. In particular, two complementary problem settings are considered: (1) gender/age prediction from given face images, and (2) synthesis and editing of human faces with the required gender/age attributes. Convolutional Neural Network (CNN) has currently become a standard model for image-based object recognition in general, and therefore, is a natural choice for addressing the first of these two problems. However, our preliminary studies have shown that the ...
Antipov, Grigory — Télécom ParisTech (Eurecom)
Spoofing and Disguise Variations in Face Recognition
Human recognition has become an important topic as the need and investments for security applications grow continuously. Biometrics enable reliable and efficient identity management systems by using physical and behavioral characteristics of the subjects that are permanent, universal and easy to access. This is why, the topic of biometrics attracts higher attention today. Numerous biometric systems exist which utilize various human characteristics. Among all biometrics traits, face recognition is advantageous in terms of accessibility and reliability. It allows identification at relatively high distances for unaware subjects that do not have to cooperate. In this dissertation, two challenges in face recognition are analyzed. The first one is face spoofing. Initially, spoofing in face recognition is explained together with the countermeasure techniques that are proposed for the protection of face recognition systems against spoofing attacks. The second challenge explored in this thesis ...
Kose, Neslihan — EURECOM
Improving Security and Privacy in Biometric Systems
The achievement of perfect security is out of the question. Even if we are not yet aware of them, every security aimed technology has weaknesses which attackers can exploit in order to circumvent the system. We should hence direct our efforts to the development of applications whose security level make it infeasible for computationally bound attackers to break the systems. This Thesis is focused on improving the security and privacy provided by biometric systems. With the increased need for reliable and automatic identity verification, biometrics have emerged in the last decades as a pushing alternative to traditional authentication methods. Certainly, biometrics are very attractive and useful for the general public: forget about PINs and passwords, you are your own key. However, the wide deployment of biometric recognition systems at both large-scale applications (e.g., border management at European level or national ...
Gomez-Barrero, Marta — Universidad Autonoma de Madrid
Security/Privacy Analysis of Biometric Hashing and Template Protection for Fingerprint Minutiae
This thesis has two main parts. The first part deals with security and privacy analysis of biometric hashing. The second part introduces a method for fixed-length feature vector extraction and hash generation from fingerprint minutiae. The upsurge of interest in biometric systems has led to development of biometric template protection methods in order to overcome security and privacy problems. Biometric hashing produces a secure binary template by combining a personal secret key and the biometric of a person, which leads to a two factor authentication method. This dissertation analyzes biometric hashing both from a theoretical point of view and in regards to its practical application. For theoretical evaluation of biohashes, a systematic approach which uses estimated entropy based on degree of freedom of a binomial distribution is outlined. In addition, novel practical security and privacy attacks against face image hashing ...
Berkay Topcu — Sabanci University
Privacy Protecting Biometric Authentication Systems
As biometrics gains popularity and proliferates into the daily life, there is an increased concern over the loss of privacy and potential misuse of biometric data held in central repositories. The major concerns are about i) the use of biometrics to track people, ii) non-revocability of biometrics (eg. if a fingerprint is compromised it can not be canceled or reissued), and iii) disclosure of sensitive information such as race, gender and health problems which may be revealed by biometric traits. The straightforward suggestion of keeping the biometric data in a user owned token (eg. smart cards) does not completely solve the problem, since malicious users can claim that their token is broken to avoid biometric verification altogether. Put together, these concerns brought the need for privacy preserving biometric authentication methods in the recent years. In this dissertation, we survey existing ...
Kholmatov, Alisher — Sabanci University
Deep Learning of GNSS Signal Detection
Global Navigation Satellite Systems (GNSS) is the de facto technology for Position, Navigation, and Timing (PNT) applications when it is available. GNSS relies on one or more satellite constellations that transmit ranging signals, which a receiver can use to self-localize. Signal acquisition is a crucial step in GNSS receivers, which is typically solved by maximizing the so-called Cross Ambiguity Function (CAF) resulting from a hypothesis testing problem. The CAF is a two-dimensional function that is related to the correlation between the received signal and a local code replica for every possible delay/Doppler pair, which is then maximized for signal detection and coarse synchronization. The outcome of this statistical process decides whether the signal from a particular satellite is present or absent in the received signal, as well as provides a rough estimate of its associated code delay and Doppler frequency, ...
Borhani Darian,Parisa — Northeastern University
Adapted Fusion Schemes for Multimodal Biometric Authentication
This Thesis is focused on the combination of multiple biometric traits for automatic person authentication, in what is called a multimodal biometric system. More generally, any type of biometric information can be combined in what is called a multibiometric system. The information sources in multibiometrics include not only multiple biometric traits but also multiple sensors, multiple biometric instances (e.g., different fingers in fingerprint verification), repeated instances, and multiple algorithms. Most of the approaches found in the literature for combining these various information sources are based on the combination of the matching scores provided by individual systems built on the different biometric evidences. The combination schemes following this architecture are typically based on combination rules or trained pattern classifiers, and most of them assume that the score level fusion function is fixed at verification time. This Thesis considers the problem of ...
Fierrez, Julian — Universidad Politecnica de Madrid
Fusing prosodic and acoustic information for speaker recognition
Automatic speaker recognition is the use of a machine to identify an individual from a spoken sentence. Recently, this technology has been undergone an increasing use in applications such as access control, transaction authentication, law enforcement, forensics, and system customisation, among others. One of the central questions addressed by this field is what is it in the speech signal that conveys speaker identity. Traditionally, automatic speaker recognition systems have relied mostly on short-term features related to the spectrum of the voice. However, human speaker recognition relies on other sources of information; therefore, there is reason to believe that these sources can play also an important role in the automatic speaker recognition task, adding complementary knowledge to the traditional spectrum-based recognition systems and thus improving their accuracy. The main objective of this thesis is to add prosodic information to a traditional ...
Farrus, Mireia — Universitat Politecnica de Catalunya
Automatic Recognition of Ageing Speakers
The process of ageing causes changes to the voice over time. There have been significant research efforts in the automatic speaker recognition community towards improving performance in the presence of everyday variability. The influence of long-term variability, due to vocal ageing, has received only marginal attention however. In this Thesis, the impact of vocal ageing on speaker verification and forensic speaker recognition is assessed, and novel methods are proposed to counteract its effect. The Trinity College Dublin Speaker Ageing (TCDSA) database, compiled for this study, is first introduced. Containing 26 speakers, with recordings spanning an age difference of between 28 and 58 years per speaker, it is the largest longitudinal speech database in the public domain. A Gaussian Mixture Model-Universal Background Model (GMM-UBM) speaker verification experiment demonstrates a progressive decline in the scores of genuine-speakers as the age difference between ...
Kelly, Finnian — Trinity College Dublin
Decision threshold estimation and model quality evaluation techniques for speaker verification
The number of biometric applications has increased a lot in the last few years. In this context, the automatic person recognition by some physical traits like fingerprints, face, voice or iris, plays an important role. Users demand this type of applications every time more and the technology seems already mature. People look for security, low cost and accuracy but, at the same time, there are many other factors in connection with biometric applications that are growing in importance. Intrusiveness is undoubtedly a burning factor to decide about the biometrics we will used for our application. At this point, one can realize about the suitability of speaker recognition because voice is the natural way of communicating, can be remotely used and provides a low cost. Automatic speaker recognition is commonly used in telephonic applications although it can also be used in ...
Rodriguez Saeta, Javier — Universitat Politecnica de Catalunya
The increasing use of technological devices and biometric recognition systems in people daily lives has motivated a great deal of research interest in the development of effective and robust systems. However, there are still some challenges to be solved in these systems when Deep Neural Networks (DNNs) are employed. For this reason, this thesis proposes different approaches to address these issues. First of all, we have analyzed the effect of introducing the most widespread DNN architectures to develop systems for face and text-dependent speaker verification tasks. In this analysis, we observed that state-of-the-art DNNs established for many tasks, including face verification, did not perform efficiently for text-dependent speaker verification. Therefore, we have conducted a study to find the cause of this poor performance and we have noted that under certain circumstances this problem is due to the use of a ...
Mingote, Victoria — University of Zaragoza
The proliferation of handheld devices such as smartphones and tablets brings a new scenario for biometric authentication, and in particular to automatic signature verification. Research on signature verification has been traditionally carried out using signatures acquired on digitizing tablets or Tablet-PCs. This PhD Thesis addresses the problem of user authentication on handled devices using handwritten signatures and graphical passwords based on free-form doodles, as well as the effects of biometric aging on signatures. The Thesis pretends to analyze: (i) which are the effects of mobile conditions on signature and doodle verification, (ii) which are the most distinctive features in mobile conditions, extracted from the pen or fingertip trajectory, (iii) how do different similarity computation (i.e. matching) algorithms behave with signatures and graphical passwords captured on mobile conditions, and (iv) what is the impact of aging on signature features and verification ...
Martinez-Diaz, Marcos — Universidad Autonoma de Madrid
Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors
This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...
Gil-Martín, Manuel — Universidad Politécnica de Madrid
Machine Learning Techniques for Image Forensics in Adversarial Setting
The use of machine-learning for multimedia forensics is gaining more and more consensus, especially due to the amazing possibilities offered by modern machine learning techniques. By exploiting deep learning tools, new approaches have been proposed whose performance remarkably exceed those achieved by state-of-the-art methods based on standard machine-learning and model-based techniques. However, the inherent vulnerability and fragility of machine learning architectures pose new serious security threats, hindering the use of these tools in security-oriented applications, and, among them, multimedia forensics. The analysis of the security of machine learning-based techniques in the presence of an adversary attempting to impede the forensic analysis, and the development of new solutions capable to improve the security of such techniques is then of primary importance, and, recently, has marked the birth of a new discipline, named Adversarial Machine Learning. By focusing on Image Forensics and ...
Nowroozi, Ehsan — Dept. of Information Engineering and Mathematics, University of Siena
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.