Nonlinear processing of non-Gaussian stochastic and chaotic deterministic time series

It is often assumed that interference or noise signals are Gaussian stochastic processes. Gaussian noise models are appealing as they usually result in noise suppression algorithms that are simple: i.e. linear and closed form. However, such linear techniques may be sub-optimal when the noise process is either a non-Gaussian stochastic process or a chaotic deterministic process. In the event of encountering such noise processes, improvements in noise suppression, relative to the performance of linear methods, may be achievable using nonlinear signal processing techniques. The application of interest for this thesis is maritime surveillance radar, where the main source of interference, termed sea clutter, is widely accepted to be a non-Gaussian stochastic process at high resolutions and/or at low grazing angles. However, evidence has been presented during the last decade which suggests that sea clutter may be better modelled as a ...

Cowper, Mark — University Of Edinburgh


Some Contributions to Machine Learning-based System Identification and Speech Enhancement for Nonlinear Acoustic Echo Control

Given the widespread use of miniaturized audio interfaces, echo control systems are faced with increasing challenges to address a large variety of acoustic conditions observed by such interfaces. This motivates the use of sophisticated machine learning-based techniques to overcome the limitations of conventional methods. The contributions in this thesis can be outlined by decomposing the task of nonlinear acoustic echo control into two subtasks: Nonlinear Acoustic Echo Cancellation (NAEC) and Acoustic Echo Suppression (AES). In particular, by formulating the single-channel NAEC model-adaptation task as a Bayesian recursive filtering problem, an evolutionary resampling strategy for particle filtering is proposed. The resulting Elitist Resampling Particle Filter (ERPF) is shown experimentally to be an efficient and high-performing approach that can be extended to address challenging conditions such as non-stationary interferers. The fundamental problem of nonlinear model design is addressed by proposing a novel ...

Halimeh, Mhd Modar — Friedrich-Alexander-Universität Erlangen-Nürnberg


Nonlinear rate control techniques for constant bit rate MPEG video coders

Digital visual communication has been increasingly adopted as an efficient new medium in a variety of different fields; multi-media computers, digital televisions, telecommunications, etc. Exchange of visual information between remote sites requires that digital video is encoded by compressing the amount of data and transmitting it through specified network connections. The compression and transmission of digital video is an amalgamation of statistical data coding processes, which aims at efficient exchange of visual information without technical barriers due to different standards, services, media, etc. It is associated with a series of different disciplines of digital signal processing, each of which can be applied independently. It includes a few different technical principles; distortion, rate theory, prediction techniques and control theory. The MPEG (Moving Picture Experts Group) video compression standard is based on this paradigm, thus, it contains a variety of different coding ...

Saw, Yoo-Sok — University Of Edinburgh


Oscillator-plus-Noise Modeling of Speech Signals

In this thesis we examine the autonomous oscillator model for synthesis of speech signals. The contributions comprise an analysis of realizations and training methods for the nonlinear function used in the oscillator model, the combination of the oscillator model with inverse filtering, both significantly increasing the number of `successfully' re-synthesized speech signals, and the introduction of a new technique suitable for the re-generation of the noise-like signal component in speech signals. Nonlinear function models are compared in a one-dimensional modeling task regarding their presupposition for adequate re-synthesis of speech signals, in particular considering stability. The considerations also comprise the structure of the nonlinear functions, with the aspect of the possible interpolation between models for different speech sounds. Both regarding stability of the oscillator and the premiss of a nonlinear function structure that may be pre-defined, RBF networks are found a ...

Rank, Erhard — Vienna University of Technology


Multi-user Receiver Structures for Direct Sequence Code Division Multiple Access

This thesis reports on an investigation of various system architectures and receiver structures for cellular communications systems which discriminate users by direct sequence code division multiple access (DSCDMA). Attention is focussed on the downlink of such a spread spectrum system and the influence of a number of design parameters is considered. The objective of the thesis is to investigate signal processing techniques which may be employed either at the receiver, or throughout the system to improve the overall capacity. The principles of spread spectrum communication are first outlined, including a discussion of the relative merits of spreading sequence sets, and a description of various signal processing techniques which are to be applied to the multi-user environment. The measure of system performance is introduced, and the conventional DS-CDMA system is analysed theoretically and through simulation to provide a reference performance level. ...

Band, Ian W. — University Of Edinburgh


Estimation of Nonlinear Dynamic Systems: Theory and Applications

This thesis deals with estimation of states and parameters in nonlinear and non-Gaussian dynamic systems. Sequential Monte Carlo methods are mainly used to this end. These methods rely on models of the underlying system, motivating some developments of the model concept. One of the main reasons for the interest in nonlinear estimation is that problems of this kind arise naturally in many important applications. Several applications of nonlinear estimation are studied. The models most commonly used for estimation are based on stochastic difference equations, referred to as state-space models. This thesis is mainly concerned with models of this kind. However, there will be a brief digression from this, in the treatment of the mathematically more intricate differential-algebraic equations. Here, the purpose is to write these equations in a form suitable for statistical signal processing. The nonlinear state estimation problem is ...

Schon, Thomas — Linkopings Universitet


Stability of Coupled Adaptive Filters

Nowadays, many disciplines in science and engineering deal with problems for which a solution relies on knowledge about the characteristics of one or more given systems that can only be ascertained based on restricted observations. This requires the fitting of an adequately chosen model, such that it “best” conforms to a set of measured data. Depending on the context, this fitting procedure may resort to a huge amount of recorded data and abundant numerical power, or contrarily, to only a few streams of samples, which have to be processed on the fly at low computational cost. This thesis, exclusively focuses on the latter scenario. It specifically studies unexpected behaviour and reliability of the widely spread and computationally highly efficient class of gradient type algorithms. Additionally, special attention is paid to systems that combine several of them. Chapter 3 is dedicated ...

Dallinger, Robert — TU Wien


Adaptive filtering algorithms for acoustic echo cancellation and acoustic feedback control in speech communication applications

Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...

Gil-Cacho, Jose Manuel — KU Leuven


Acoustic echo reduction for multiple loudspeakers and microphones: Complexity reduction and convergence enhancement

Modern devices such as mobile phones, tablets or smart speakers are commonly equipped with several loudspeakers and microphones. If, for instance, one employs such a device for hands-free communication applications, the signals that are reproduced by the loudspeakers are propagated through the room and are inevitably acquired by the microphones. If no processing is applied, the participants in the far-end room receive delayed reverberated replicas of their own voice, which strongly degrades both speech intelligibility and user comfort. In order to prevent that so-called acoustic echoes are transmitted back to the far-end room, acoustic echo cancelers are commonly employed. The latter make use of adaptive filtering techniques to identify the propagation paths between loudspeakers and microphones. The estimated propagation paths are then employed to compute acoustic echo estimates, which are finally subtracted from the signals acquired by the microphones. In ...

Luis Valero, Maria — International Audio Laboratories Erlangen


Resource Allocation in Modulation and Equalization Procedures in DSL Modems

Digital subscriber line (DSL) technology is a very popular broadband access technology. It uses the existing telephone infrastructure to provide broadband access. In order to cope with the increased bandwidth demand to support broadband services, such as, Video on Demand (VoD), real time multimedia streaming, it is important to further improve the DSL. The main performance degradation of the DSL system is caused by channel impairments, such as, crosstalk and inter-symbol interference (ISI). Furthermore, the discrete Fourier transform (DFT) based discrete multitone (DMT) system has very poor spectral properties, which prohibit the use of tones at the band edges in order to meet the power spectral density (PSD) constraints of the system, thus reducing the achievable bit rate. In order to mitigate the channel impairments as well as to combat the poor spectral properties of the DFT based DMT, sophisticated ...

Kumar Pandey, Prabin — KU Leuven


Spatio-Temporal Speech Enhancement in Adverse Acoustic Conditions

Never before has speech been captured as often by electronic devices equipped with one or multiple microphones, serving a variety of applications. It is the key aspect in digital telephony, hearing devices, and voice-driven human-to-machine interaction. When speech is recorded, the microphones also capture a variety of further, undesired sound components due to adverse acoustic conditions. Interfering speech, background noise and reverberation, i.e. the persistence of sound in a room after excitation caused by a multitude of reflections on the room enclosure, are detrimental to the quality and intelligibility of target speech as well as the performance of automatic speech recognition. Hence, speech enhancement aiming at estimating the early target-speech component, which contains the direct component and early reflections, is crucial to nearly all speech-related applications presently available. In this thesis, we compare, propose and evaluate existing and novel approaches ...

Dietzen, Thomas — KU Leuven


Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Transmission over Time- and Frequency-Selective Mobile Wireless Channels

The wireless communication industry has experienced rapid growth in recent years, and digital cellular systems are currently designed to provide high data rates at high terminal speeds. High data rates give rise to intersymbol interference (ISI) due to so-called multipath fading. Such an ISI channel is called frequency selective. On the other hand, due to terminal mobility and/or receiver frequency offset the received signal is subject to frequency shifts (Doppler shifts). Doppler shift induces time-selectivity characteristics. The Doppler effect in conjunction with ISI gives rise to a so-called doubly selective channel (frequency- and time-selective). In addition to the channel effects, the analog front-end may suffer from an imbalance between the I and Q branch amplitudes and phases as well as from carrier frequency offset. These analog front-end imperfections then result in an additional and significant degradation in system performance, especially ...

Barhumi, Imad — Katholieke Universiteit Leuven


Adaptive Algorithms for Intelligent Acoustic Interfaces

Modern speech communications are evolving towards a new direction which involves users in a more perceptive way. That is the immersive experience, which may be considered as the “last mile” problem of telecommunications. One of the main feature of immersive communications is the distant-talking, i.e. the hands-free (in the broad sense) speech communications without bodyworn or tethered microphones that takes place in a multisource environment where interfering signals may degrade the communication quality and the intelligibility of the desired speech source. In order to preserve speech quality intelligent acoustic interfaces may be used. An intelligent acoustic interface may comprise multiple microphones and loudspeakers and its peculiarity is to model the acoustic channel in order to adapt to user requirements and to environment conditions. This is the reason why intelligent acoustic interfaces are based on adaptive filtering algorithms. The acoustic path ...

Comminiello, Danilo — Sapienza University of Rome


Efficient parametric modeling, identification and equalization of room acoustics

Room acoustic signal enhancement (RASE) applications, such as digital equalization, acoustic echo and feedback cancellation, which are commonly found in communication devices and audio equipment, aim at processing the acoustic signals with the final goal of improving the perceived sound quality in rooms. In order to do so, signal processing algorithms require the acoustic response of the room to be represented by means of parametric models and to be identified from the input and output signals of the room acoustic system. In particular, a good model should be both accurate, thus capturing those features of room acoustics that are physically and perceptually most relevant, and efficient, so that it can be implemented as a digital filter and used in practical signal processing tasks. This thesis addresses the fundamental question in room acoustic signal processing concerning the appropriateness of different parametric ...

Vairetti, Giacomo — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.