Vulnerabilities and Attack Protection in Security Systems Based on Biometric Recognition

Absolute security does not exist: given funding, willpower and the proper technology, every security system can be compromised. However, the objective of the security community should be to develop such applications that the funding, the will, and the resources needed by the attacker to crack the system prevent him from attempting to do so. This Thesis is focused on the vulnerability assessment of biometric systems. Although being relatively young compared to other mature and long-used security technologies, biometrics have emerged in the last decade as a pushing alternative for applications where automatic recognition of people is needed. Certainly, biometrics are very attractive and useful for the final user: forget about PINs and passwords, you are your own key. However, we cannot forget that as any technology aimed to provide a security service, biometric systems are exposed to external attacks which ...

Javier Galbally — Universidad Autonoma de Madrid


Improving Security and Privacy in Biometric Systems

The achievement of perfect security is out of the question. Even if we are not yet aware of them, every security aimed technology has weaknesses which attackers can exploit in order to circumvent the system. We should hence direct our efforts to the development of applications whose security level make it infeasible for computationally bound attackers to break the systems. This Thesis is focused on improving the security and privacy provided by biometric systems. With the increased need for reliable and automatic identity verification, biometrics have emerged in the last decades as a pushing alternative to traditional authentication methods. Certainly, biometrics are very attractive and useful for the general public: forget about PINs and passwords, you are your own key. However, the wide deployment of biometric recognition systems at both large-scale applications (e.g., border management at European level or national ...

Gomez-Barrero, Marta — Universidad Autonoma de Madrid


A Game-Theoretic Approach for Adversarial Information Fusion in Distributed Sensor Networks

Every day we share our personal information through digital systems which are constantly exposed to threats. For this reason, security-oriented disciplines of signal processing have received increasing attention in the last decades: multimedia forensics, digital watermarking, biometrics, network monitoring, steganography and steganalysis are just a few examples. Even though each of these elds has its own peculiarities, they all have to deal with a common problem: the presence of one or more adversaries aiming at making the system fail. Adversarial Signal Processing lays the basis of a general theory that takes into account the impact that the presence of an adversary has on the design of effective signal processing tools. By focusing on the application side of Adversarial Signal Processing, namely adversarial information fusion in distributed sensor networks, and adopting a game-theoretic approach, this thesis contributes to the above mission ...

Kallas, Kassem — University of Siena


Distributed Demand-Side Optimization in the Smart Grid

The modern power grid is facing major challenges in the transition to a low-carbon energy sector. The growing energy demand and environmental concerns require carefully revisiting how electricity is generated, transmitted, and consumed, with an eye to the integration of renewable energy sources. The envisioned smart grid is expected to address such issues by introducing advanced information, control, and communication technologies into the energy infrastructure. In this context, demand-side management (DSM) makes the end users responsible for improving the efficiency, reliability and sustainability of the power system: this opens up unprecedented possibilities for optimizing the energy usage and cost at different levels of the network. The design of DSM techniques has been extensively discussed in the literature in the last decade, although the performance of these methods has been scarcely investigated from the analytical point of view. In this thesis, ...

Atzeni, Italo — Universitat Politècnica de Catalunya


Device-to-Device Wireless Communications

Device-to-Device (D2D) is one of the important proposed solutions to increase the capacity, offload the traffic, and improve the energy effciency in next generation cellular networks. D2D communication is known as a direct communication between two users without using cellular infrastructure networks. Despite of large expected bene fits in terms of capacity in D2D, the coexistence of D2D and cellular networks in the same spectrum creates new challenges in interference management and network design. To limit the interference power control schemes on cellular networks and D2D networks are typically adopted. Even though power control is introduced to limit the interference level, it does not prevent cellular and D2D users from experiencing coverage limitation when sharing the same radio resources. Therefore, the design of such networks requires the availability of suitable methods able to properly model the eff ect of interference ...

Alhalabi, Ashraf S.A. — Universita Degli Sudi di Bologna


Robust Signal Processing with Applications to Positioning and Imaging

This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...

Li, Haoqing — Northeastern University


Reconstruction and clustering with graph optimization and priors on gene networks and images

The discovery of novel gene regulatory processes improves the understanding of cell phenotypic responses to external stimuli for many biological applications, such as medicine, environment or biotechnologies. To this purpose, transcriptomic data are generated and analyzed from DNA microarrays or more recently RNAseq experiments. They consist in genetic expression level sequences obtained for all genes of a studied organism placed in different living conditions. From these data, gene regulation mechanisms can be recovered by revealing topological links encoded in graphs. In regulatory graphs, nodes correspond to genes. A link between two nodes is identified if a regulation relationship exists between the two corresponding genes. Such networks are called Gene Regulatory Networks (GRNs). Their construction as well as their analysis remain challenging despite the large number of available inference methods. In this thesis, we propose to address this network inference problem ...

Pirayre, Aurélie — IFP Energies nouvelles


Wireless Network Localization via Cooperation

This dissertation details two classes of cooperative localization methods for wireless networks in mixed line-of-sight and non-line-of-sight (LOS/NLOS) environments. The classes of methods depend on the amount of prior knowledge available. The methods used for both classes are based on the assumptions in practical localization environments that neither NLOS identification nor experimental campaigns are affordable. Two major contributions are, first, in methods that provide satisfactory localization accuracy whilst relaxing the requirement on statistical knowledge about the measurement model. Second, in methods that provide significantly improved localization performance without the requirement of good initialization. In the first half of the dissertation, cooperative localization using received signal strength (RSS) measurements in homogeneous mixed LOS/NLOS environments is considered for the case where the key model parameter, the path loss exponent, is unknown. The approach taken is to model the positions and the path ...

Jin, Di — Signal Processing Group, Technische Universität Darmstadt


Theoretical Foundations of Adversarial Detection and Applications to Multimedia Forensics

Every day we share our personal information with digital systems which are constantly exposed to threats. Security-oriented disciplines of signal processing have then received increasing attention in the last decades: multimedia forensics, digital watermarking, biometrics, network intrusion detection, steganography and steganalysis are just a few examples. Even though each of these fields has its own peculiarities, they all have to deal with a common problem: the presence of adversaries aiming at making the system fail. It is the purpose of Adversarial Signal Processing to lay the basis of a general theory that takes into account the impact of an adversary on the design of effective signal processing tools. By focusing on the most prominent problem of Adversarial Signal Processing, namely binary detection or Hypothesis Testing, we contribute to the above mission with a general theoretical framework for the binary detection ...

Tondi, Benedetta — University of Siena


Fading in Wearable Communications Channels and its Mitigation

The fabrication of miniature electronics and sensors has encouraged the creation of a wide range of wireless enabled devices designed to be worn on the human body. This has led to the prominence of so-called wearable communications, which have emerged to satisfy the demand for wireless connectivity between these devices and with external networks. The work in this thesis has focused on the characterization of the composite fading (i.e combined multipath and shadowing) observed in wearable communications channels. It has also investigated the mitigation of the deleterious effects of both of these propagation phenomena in wearable communications. In order to accurately characterize the behaviour of the composite fading signal observed in wearable communications channels, new fading models such as F, $\kappa$-$\mu$ / inverse gamma and $\eta$-$\mu$ / inverse gamma composite fading models, have been proposed. The generality and utility of ...

Seong Ki Yoo — Queen's University Belfast


On Bayesian Methods for Black-Box Optimization: Efficiency, Adaptation and Reliability

Recent advances in many fields ranging from engineering to natural science, require increasingly complicated optimization tasks in the experiment design, for which the target objectives are generally in the form of black-box functions that are expensive to evaluate. In a common formulation of this problem, a designer is expected to solve the black-box optimization tasks via sequentially attempting candidate solutions and receiving feedback from the system. This thesis considers Bayesian optimization (BO) as the black-box optimization framework, and investigates the enhancements on BO from the aspects of efficiency, adaptation and reliability. Generally, BO consists of a surrogate model for providing probabilistic inference and an acquisition function which leverages the probabilistic inference for selecting the next candidate solution. Gaussian process (GP) is a prominent non-parametric surrogate model, and the quality of its inference is a critical factor on the optimality performance ...

Zhang, Yunchuan — King's College London


Massive MIMO: Fundamentals and System Designs

The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input-multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology ...

Ngo, Quoc Hien — Linköping University


GNSS Array-based Acquisition: Theory and Implementation

This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. GNSS ranging signals are received with very low signal-to-noise ratio. Despite that the GNSS CDMA modulation offers limited protection against Radio Frequency Interferences (RFI), an interference that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service. A growing concern of this problem has appeared in recent times. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in the presence of wideband interferences. Antenna arrays receivers can benefit from spatial-domain processing, and thus mitigate the effects of interfering signals. ...

Arribas, Javier — Universitat Politecnica de Catalunya


Distributed Caching Methods in Small Cell Networks

This thesis explores one of the key enablers of 5G wireless networks leveraging small cell network deployments, namely proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context-awareness and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user demands, via caching at base stations and users' devices. In order to show the effectiveness of proactive caching techniques, we tackle the problem from two different perspectives, namely theoretical and practical ones. In the first part of this thesis, we use tools from stochastic geometry to model and analyse the theoretical gains of caching at base stations. In particular, we focus on 1) single-tier networks where small base stations with limited storage are deployed, 2) multi-tier networks with limited backhaul, and) multi-tier clustered networks with two different topologies, namely coverage-aided and capacity-aided deployments. Therein, ...

Bastug, Ejder — CentraleSupélec, Université Paris-Saclay


System Level Modeling and Evaluation of Heterogeneous Cellular Networks

The cumulative impact of co-channel interferers, commonly referred to as aggregate network interference, is one of the main performance limiting factors in today’s mobile cellular networks. Thus, its careful statistical description is decisive for system analysis and design. A system model for interference analysis is required to capture essential network variation effects, such as base station deployment- and signal propagation characteristics. Furthermore it should be simple and tractable so as to enable first-order insights on design fundamentals and rapid exchange of new ideas. Interference modeling has posed a challenge ever since the establishment of traditional macro cellular deployments. The recent emergence of heterogeneous network topologies complicates matters by contesting many established aspects of time-honored approaches. This thesis presents user-centric system models that enable to investigate scenarios with an asymmetric interference impact. The first approach simplifies the interference analysis in a ...

Taranetz, Martin — Technische Universität Wien

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.