Acoustic echo reduction for multiple loudspeakers and microphones: Complexity reduction and convergence enhancement

Modern devices such as mobile phones, tablets or smart speakers are commonly equipped with several loudspeakers and microphones. If, for instance, one employs such a device for hands-free communication applications, the signals that are reproduced by the loudspeakers are propagated through the room and are inevitably acquired by the microphones. If no processing is applied, the participants in the far-end room receive delayed reverberated replicas of their own voice, which strongly degrades both speech intelligibility and user comfort. In order to prevent that so-called acoustic echoes are transmitted back to the far-end room, acoustic echo cancelers are commonly employed. The latter make use of adaptive filtering techniques to identify the propagation paths between loudspeakers and microphones. The estimated propagation paths are then employed to compute acoustic echo estimates, which are finally subtracted from the signals acquired by the microphones. In ...

Luis Valero, Maria — International Audio Laboratories Erlangen


Efficient parametric modeling, identification and equalization of room acoustics

Room acoustic signal enhancement (RASE) applications, such as digital equalization, acoustic echo and feedback cancellation, which are commonly found in communication devices and audio equipment, aim at processing the acoustic signals with the final goal of improving the perceived sound quality in rooms. In order to do so, signal processing algorithms require the acoustic response of the room to be represented by means of parametric models and to be identified from the input and output signals of the room acoustic system. In particular, a good model should be both accurate, thus capturing those features of room acoustics that are physically and perceptually most relevant, and efficient, so that it can be implemented as a digital filter and used in practical signal processing tasks. This thesis addresses the fundamental question in room acoustic signal processing concerning the appropriateness of different parametric ...

Vairetti, Giacomo — KU Leuven


Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Solving inverse problems in room acoustics using physical models, sparse regularization and numerical optimization

Reverberation consists of a complex acoustic phenomenon that occurs inside rooms. Many audio signal processing methods, addressing source localization, signal enhancement and other tasks, often assume absence of reverberation. Consequently, reverberant environments are considered challenging as state-ofthe-art methods can perform poorly. The acoustics of a room can be described using a variety of mathematical models, among which, physical models are the most complete and accurate. The use of physical models in audio signal processing methods is often non-trivial since it can lead to ill-posed inverse problems. These inverse problems require proper regularization to achieve meaningful results and involve the solution of computationally intensive large-scale optimization problems. Recently, however, sparse regularization has been applied successfully to inverse problems arising in different scientific areas. The increased computational power of modern computers and the development of new efficient optimization algorithms makes it possible ...

Antonello, Niccolò — KU Leuven


Adaptive filtering algorithms for acoustic echo cancellation and acoustic feedback control in speech communication applications

Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...

Gil-Cacho, Jose Manuel — KU Leuven


Distributed Localization and Tracking of Acoustic Sources

Localization, separation and tracking of acoustic sources are ancient challenges that lots of animals and human beings are doing intuitively and sometimes with an impressive accuracy. Artificial methods have been developed for various applications and conditions. The majority of those methods are centralized, meaning that all signals are processed together to produce the estimation results. The concept of distributed sensor networks is becoming more realistic as technology advances in the fields of nano-technology, micro electro-mechanic systems (MEMS) and communication. A distributed sensor network comprises scattered nodes which are autonomous, self-powered modules consisting of sensors, actuators and communication capabilities. A variety of layout and connectivity graphs are usually used. Distributed sensor networks have a broad range of applications, which can be categorized in ecology, military, environment monitoring, medical, security and surveillance. In this dissertation we develop algorithms for distributed sensor networks ...

Dorfan, Yuval — Bar Ilan University


Filter Optimization for Personal Sound Zones Systems

Personal Sound Zones (PSZ) systems deliver different sounds to a number of listeners sharing an acoustic space through the use of loudspeakers together with signal processing techniques. These systems have attracted a lot of attention in recent years because of the wide range of applications that would benefit from the generation of individual listening zones, e.g., domestic or automotive audio applications. A key aspect of PSZ systems, at least for low and mid frequencies, is the optimization of the filters used to process the sound signals. Different algorithms have been proposed in the literature for computing those filters, each exhibiting some advantages and disadvantages. In this work, the state-of-the-art algorithms for PSZ systems are reviewed, and their performance in a reverberant environment is evaluated. Aspects such as the acoustic isolation between zones, the reproduction error, the energy of the filters, ...

Vicent Molés Cases — Universitat Politecnica de Valencia


Design and evaluation of digital signal processing algorithms for acoustic feedback and echo cancellation

This thesis deals with several open problems in acoustic echo cancellation and acoustic feedback control. Our main goal has been to develop solutions that provide a high performance and sound quality, and behave in a robust way in realistic conditions. This can be achieved by departing from the traditional ad-hoc methods, and instead deriving theoretically well-founded solutions, based on results from parameter estimation and system identification. In the development of these solutions, the computational efficiency has permanently been taken into account as a design constraint, in that the complexity increase compared to the state-of-the-art solutions should not exceed 50 % of the original complexity. In the context of acoustic echo cancellation, we have investigated the problems of double-talk robustness, acoustic echo path undermodeling, and poor excitation. The two former problems have been tackled by including adaptive decorrelation filters in the ...

van Waterschoot, Toon — Katholieke Universiteit Leuven


Cognitive Models for Acoustic and Audiovisual Sound Source Localization

Sound source localization algorithms have a long research history in the field of digital signal processing. Many common applications like intelligent personal assistants, teleconferencing systems and methods for technical diagnosis in acoustics require an accurate localization of sound sources in the environment. However, dynamic environments entail a particular challenge for these systems. For instance, voice controlled smart home applications, where the speaker, as well as potential noise sources, are moving within the room, are a typical example of dynamic environments. Classical sound source localization systems only have limited capabilities to deal with dynamic acoustic scenarios. In this thesis, three novel approaches to sound source localization that extend existing classical methods will be presented. The first system is proposed in the context of audiovisual source localization. Determining the position of sound sources in adverse acoustic conditions can be improved by including ...

Schymura, Christopher — Ruhr University Bochum


Three-Dimensional Digital Waveguide Mesh Modelling for Room Acoustic Simulation

Accurate auralisation remains the Holy Grail of room acoustics. Until now the models used for room impulse response (RIR) simulation have been either impractical to use due to excessive computational loading or based upon simplified approaches, unable to provide the levels of perceptual accuracy required by many applications. An example is the archaeological acoustic investigation of the intriguing properties of Neolithic passage graves such as Newgrange. After reviewing the currently available options, this thesis concentrates on digital waveguide mesh (DWM) physical modelling, on the premise that the three-dimensional (3D) version of this technique can be developed to provide the desired accuracy with reasonable computation times. Various 3D-mesh topologies, namely rectilinear, tetrahedral, octahedral and cubic close-packed (CCP), are analysed. Room simulation packages have been implemented for the rectilinear and tetrahedral topologies. Both are capable of generating highly scalable parallel models through ...

Campos, Guilherme — University of York / Department of Electronics


Mixed structural models for 3D audio in virtual environments

In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...

Geronazzo, Michele — University of Padova


Spatio-Temporal Speech Enhancement in Adverse Acoustic Conditions

Never before has speech been captured as often by electronic devices equipped with one or multiple microphones, serving a variety of applications. It is the key aspect in digital telephony, hearing devices, and voice-driven human-to-machine interaction. When speech is recorded, the microphones also capture a variety of further, undesired sound components due to adverse acoustic conditions. Interfering speech, background noise and reverberation, i.e. the persistence of sound in a room after excitation caused by a multitude of reflections on the room enclosure, are detrimental to the quality and intelligibility of target speech as well as the performance of automatic speech recognition. Hence, speech enhancement aiming at estimating the early target-speech component, which contains the direct component and early reflections, is crucial to nearly all speech-related applications presently available. In this thesis, we compare, propose and evaluate existing and novel approaches ...

Dietzen, Thomas — KU Leuven


Integrating monaural and binaural cues for sound localization and segregation in reverberant environments

The problem of segregating a sound source of interest from an acoustic background has been extensively studied due to applications in hearing prostheses, robust speech/speaker recognition and audio information retrieval. Computational auditory scene analysis (CASA) approaches the segregation problem by utilizing grouping cues involved in the perceptual organization of sound by human listeners. Binaural processing, where input signals resemble those that enter the two ears, is of particular interest in the CASA field. The dominant approach to binaural segregation has been to derive spatially selective filters in order to enhance the signal in a direction of interest. As such, the problems of sound localization and sound segregation are closely tied. While spatial filtering has been widely utilized, substantial performance degradation is incurred in reverberant environments and more fundamentally, segregation cannot be performed without sufficient spatial separation between sources. This dissertation ...

Woodruff, John — The Ohio State University


Multi-microphone noise reduction and dereverberation techniques for speech applications

In typical speech communication applications, such as hands-free mobile telephony, voice-controlled systems and hearing aids, the recorded microphone signals are corrupted by background noise, room reverberation and far-end echo signals. This signal degradation can lead to total unintelligibility of the speech signal and decreases the performance of automatic speech recognition systems. In this thesis several multi-microphone noise reduction and dereverberation techniques are developed. In Part I we present a Generalised Singular Value Decomposition (GSVD) based optimal filtering technique for enhancing multi-microphone speech signals which are degraded by additive coloured noise. Several techniques are presented for reducing the computational complexity and we show that the GSVD-based optimal filtering technique can be integrated into a `Generalised Sidelobe Canceller' type structure. Simulations show that the GSVD-based optimal filtering technique achieves a larger signal-to-noise ratio improvement than standard fixed and adaptive beamforming techniques and ...

Doclo, Simon — Katholieke Universiteit Leuven


Polynomial Matrix Eigenvalue Decomposition Techniques for Multichannel Signal Processing

Polynomial eigenvalue decomposition (PEVD) is an extension of the eigenvalue decomposition (EVD) for para-Hermitian polynomial matrices, and it has been shown to be a powerful tool for broadband extensions of narrowband signal processing problems. In the context of broadband sensor arrays, the PEVD allows the para-Hermitian matrix that results from the calculation of a space-time covariance matrix of the convolutively mixed signals to be diagonalised. Once the matrix is diagonalised, not only can the correlation between different sensor signals be removed but the signal and noise subspaces can also be identified. This process is referred to as broadband subspace decomposition, and it plays a very important role in many areas that require signal separation techniques for multichannel convolutive mixtures, such as speech recognition, radar clutter suppression, underwater acoustics, etc. The multiple shift second order sequential best rotation (MS-SBR2) algorithm, built ...

Wang, Zeliang — Cardiff University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.