Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Spatio-Temporal Speech Enhancement in Adverse Acoustic Conditions

Never before has speech been captured as often by electronic devices equipped with one or multiple microphones, serving a variety of applications. It is the key aspect in digital telephony, hearing devices, and voice-driven human-to-machine interaction. When speech is recorded, the microphones also capture a variety of further, undesired sound components due to adverse acoustic conditions. Interfering speech, background noise and reverberation, i.e. the persistence of sound in a room after excitation caused by a multitude of reflections on the room enclosure, are detrimental to the quality and intelligibility of target speech as well as the performance of automatic speech recognition. Hence, speech enhancement aiming at estimating the early target-speech component, which contains the direct component and early reflections, is crucial to nearly all speech-related applications presently available. In this thesis, we compare, propose and evaluate existing and novel approaches ...

Dietzen, Thomas — KU Leuven


Integrating monaural and binaural cues for sound localization and segregation in reverberant environments

The problem of segregating a sound source of interest from an acoustic background has been extensively studied due to applications in hearing prostheses, robust speech/speaker recognition and audio information retrieval. Computational auditory scene analysis (CASA) approaches the segregation problem by utilizing grouping cues involved in the perceptual organization of sound by human listeners. Binaural processing, where input signals resemble those that enter the two ears, is of particular interest in the CASA field. The dominant approach to binaural segregation has been to derive spatially selective filters in order to enhance the signal in a direction of interest. As such, the problems of sound localization and sound segregation are closely tied. While spatial filtering has been widely utilized, substantial performance degradation is incurred in reverberant environments and more fundamentally, segregation cannot be performed without sufficient spatial separation between sources. This dissertation ...

Woodruff, John — The Ohio State University


Spherical Microphone Array Processing for Acoustic Parameter Estimation and Signal Enhancement

In many distant speech acquisition scenarios, such as hands-free telephony or teleconferencing, the desired speech signal is corrupted by noise and reverberation. This degrades both the speech quality and intelligibility, making communication difficult or even impossible. Speech enhancement techniques seek to mitigate these effects and extract the desired speech signal. This objective is commonly achieved through the use of microphone arrays, which take advantage of the spatial properties of the sound field in order to reduce noise and reverberation. Spherical microphone arrays, where the microphones are arranged in a spherical configuration, usually mounted on a rigid baffle, are able to analyze the sound field in three dimensions; the captured sound field can then be efficiently described in the spherical harmonic domain (SHD). In this thesis, a number of novel spherical array processing algorithms are proposed, based in the SHD. In ...

Jarrett, Daniel P. — Imperial College London


Binaural Beamforming Algorithms and Parameter Estimation Methods Exploiting External Microphones

In everyday speech communication situations undesired acoustic sources, such as competing speakers and background noise, frequently lead to a decreased speech intelligibility. Over the last decades, hearing devices have evolved from simple sound amplification devices to more sophisticated devices with complex functionalities such as multi-microphone speech enhancement. Binaural beamforming algorithms are spatial filters that exploit the information captured by multiple microphones on both sides of the head of the listener. Besides reducing the undesired sources, another important objective of a binaural beamforming algorithm is the preservation of the binaural cues of all sound sources to preserve the listener's spatial impression of the acoustic scene. The aim of this thesis is to develop and evaluate advanced binaural beamforming algorithms and to incorporate one or more external microphones in a binaural hearing device configuration. The first focus is to improve state-of-the-art binaural ...

Gößling, Nico — University of Oldenburg


Non-linear Spatial Filtering for Multi-channel Speech Enhancement

A large part of human speech communication takes place in noisy environments and is supported by technical devices. For example, a hearing-impaired person might use a hearing aid to take part in a conversation in a busy restaurant. These devices, but also telecommunication in noisy environments or voiced-controlled assistants, make use of speech enhancement and separation algorithms that improve the quality and intelligibility of speech by separating speakers and suppressing background noise as well as other unwanted effects such as reverberation. If the devices are equipped with more than one microphone, which is very common nowadays, then multi-channel speech enhancement approaches can leverage spatial information in addition to single-channel tempo-spectral information to perform the task. Traditionally, linear spatial filters, so-called beamformers, have been employed to suppress the signal components from other than the target direction and thereby enhance the desired ...

Tesch, Kristina — Universität Hamburg


Multi-microphone speech enhancement: An integration of a priori and data-dependent spatial information

A speech signal captured by multiple microphones is often subject to a reduced intelligibility and quality due to the presence of noise and room acoustic interferences. Multi-microphone speech enhancement systems therefore aim at the suppression or cancellation of such undesired signals without substantial distortion of the speech signal. A fundamental aspect to the design of several multi-microphone speech enhancement systems is that of the spatial information which relates each microphone signal to the desired speech source. This spatial information is unknown in practice and has to be somehow estimated. Under certain conditions, however, the estimated spatial information can be inaccurate, which subsequently degrades the performance of a multi-microphone speech enhancement system. This doctoral dissertation is focused on the development and evaluation of acoustic signal processing algorithms in order to address this issue. Specifically, as opposed to conventional means of estimating ...

Ali, Randall — KU Leuven


From Blind to Semi-Blind Acoustic Source Separation based on Independent Component Analysis

Typical acoustic scenes consist of multiple superimposed sources, where some of them represent desired signals, but often many of them are undesired sources, e.g., interferers or noise. Hence, source separation and extraction, i.e., the estimation of the desired source signals based on observed mixtures, is one of the central problems in audio signal processing. A promising class of approaches to address such problems is based on Independent Component Analysis (ICA), an unsupervised machine learning technique. These methods enjoyed a lot of attention from the research community due to the small number of assumptions that have to be made about the considered problem. Furthermore, the resulting generalization ability to unseen acoustic conditions, their mathematical rigor and the simplicity of resulting algorithms have been appreciated by many researchers working in audio signal processing. However, knowledge about the acoustic scenario is often available ...

Brendel, Andreas — Friedrich-Alexander-Universität Erlangen-Nürnberg


Robust Direction-of-Arrival estimation and spatial filtering in noisy and reverberant environments

The advent of multi-microphone setups on a plethora of commercial devices in recent years has generated a newfound interest in the development of robust microphone array signal processing methods. These methods are generally used to either estimate parameters associated with acoustic scene or to extract signal(s) of interest. In most practical scenarios, the sources are located in the far-field of a microphone array where the main spatial information of interest is the direction-of-arrival (DOA) of the plane waves originating from the source positions. The focus of this thesis is to incorporate robustness against either lack of or imperfect/erroneous information regarding the DOAs of the sound sources within a microphone array signal processing framework. The DOAs of sound sources is by itself important information, however, it is most often used as a parameter for a subsequent processing method. One of the ...

Chakrabarty, Soumitro — Friedrich-Alexander Universität Erlangen-Nürnberg


The Removal of Environmental Noise in Cellular Communications by Perceptual Techniques

This thesis describes the application of a perceptually based spectral subtraction algorithm for the enhancement of non-stationary noise corrupted speech. Through examination of speech enhancement techniques, explanations are given for the choice of magnitude spectral subtraction and how the human auditory system can be modelled for frequency domain speech enhancement. It is discovered, that the cochlea provides the mechanical speech enhancement in the auditory system, through the use of masking. Frequency masking is used in spectral subtraction, to improve the algorithm execution time, and to shape the enhancement process making it sound natural to the ear. A new technique for estimation of background noise is presented, which operates during speech sections as well as pauses. This uses two microphones placed on opposite ends of the cellular handset. Using these, the algorithm determines whether the signal is speech, or noise, by ...

Tuffy, Mark — University Of Edinburgh


Speech Enhancement Using Nonnegative Matrix Factorization and Hidden Markov Models

Reducing interference noise in a noisy speech recording has been a challenging task for many years yet has a variety of applications, for example, in handsfree mobile communications, in speech recognition, and in hearing aids. Traditional single-channel noise reduction schemes, such as Wiener filtering, do not work satisfactorily in the presence of non-stationary background noise. Alternatively, supervised approaches, where the noise type is known in advance, lead to higher-quality enhanced speech signals. This dissertation proposes supervised and unsupervised single-channel noise reduction algorithms. We consider two classes of methods for this purpose: approaches based on nonnegative matrix factorization (NMF) and methods based on hidden Markov models (HMM). The contributions of this dissertation can be divided into three main (overlapping) parts. First, we propose NMF-based enhancement approaches that use temporal dependencies of the speech signals. In a standard NMF, the important temporal ...

Mohammadiha, Nasser — KTH Royal Institute of Technology


Multi-microphone noise reduction and dereverberation techniques for speech applications

In typical speech communication applications, such as hands-free mobile telephony, voice-controlled systems and hearing aids, the recorded microphone signals are corrupted by background noise, room reverberation and far-end echo signals. This signal degradation can lead to total unintelligibility of the speech signal and decreases the performance of automatic speech recognition systems. In this thesis several multi-microphone noise reduction and dereverberation techniques are developed. In Part I we present a Generalised Singular Value Decomposition (GSVD) based optimal filtering technique for enhancing multi-microphone speech signals which are degraded by additive coloured noise. Several techniques are presented for reducing the computational complexity and we show that the GSVD-based optimal filtering technique can be integrated into a `Generalised Sidelobe Canceller' type structure. Simulations show that the GSVD-based optimal filtering technique achieves a larger signal-to-noise ratio improvement than standard fixed and adaptive beamforming techniques and ...

Doclo, Simon — Katholieke Universiteit Leuven


Pre-processing of Speech Signals for Robust Parameter Estimation

The topic of this thesis is methods of pre-processing speech signals for robust estimation of model parameters in models of these signals. Here, there is a special focus on the situation where the desired signal is contaminated by colored noise. In order to estimate the speech signal, or its voiced and unvoiced components, from a noisy observation, it is important to have robust estimators that can handle colored and non-stationary noise. Two important aspects are investigated. The first one is a robust estimation of the speech signal parameters, such as the fundamental frequency, which is required in many contexts. For this purpose, fast estimation methods based on a simple white Gaussian noise (WGN) assumption are often used. To keep using those methods, the noisy signal can be pre-processed using a filter. If the colored noise is modelled as an autoregressive ...

Esquivel Jaramillo, Alfredo — Aalborg University


Some Contributions to Machine Learning-based System Identification and Speech Enhancement for Nonlinear Acoustic Echo Control

Given the widespread use of miniaturized audio interfaces, echo control systems are faced with increasing challenges to address a large variety of acoustic conditions observed by such interfaces. This motivates the use of sophisticated machine learning-based techniques to overcome the limitations of conventional methods. The contributions in this thesis can be outlined by decomposing the task of nonlinear acoustic echo control into two subtasks: Nonlinear Acoustic Echo Cancellation (NAEC) and Acoustic Echo Suppression (AES). In particular, by formulating the single-channel NAEC model-adaptation task as a Bayesian recursive filtering problem, an evolutionary resampling strategy for particle filtering is proposed. The resulting Elitist Resampling Particle Filter (ERPF) is shown experimentally to be an efficient and high-performing approach that can be extended to address challenging conditions such as non-stationary interferers. The fundamental problem of nonlinear model design is addressed by proposing a novel ...

Halimeh, Mhd Modar — Friedrich-Alexander-Universität Erlangen-Nürnberg


Flexible Multi-Microphone Acquisition and Processing of Spatial Sound Using Parametric Sound Field Representations

This thesis deals with the efficient and flexible acquisition and processing of spatial sound using multiple microphones. In spatial sound acquisition and processing, we use multiple microphones to capture the sound of multiple sources being simultaneously active at a rever- berant recording side and process the sound depending on the application at the application side. Typical applications include source extraction, immersive spatial sound reproduction, or speech enhancement. A flexible sound acquisition and processing means that we can capture the sound with almost arbitrary microphone configurations without constraining the application at the ap- plication side. This means that we can realize and adjust the different applications indepen- dently of the microphone configuration used at the recording side. For example in spatial sound reproduction, where we aim at reproducing the sound such that the listener perceives the same impression as if he ...

Thiergart, Oliver — Friedrich-Alexander-Universitat Erlangen-Nurnberg

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.