Enabling Technologies and Cyber-Physical Systems for Mission-Critical Scenarios (2017)
Broadband Wireless Communication Systems for High Mobility Scenarios
Over the last few years multimedia and data-based services experienced a non-stopping growth. Unlike before, people do not use the services only from a static location, but they are continuously on the move between different scenarios, using their mobile devices to access data-based services. In parallel, commuter traffic from rural areas is also rising, since most of work places are in and around cities. During transportation, people intensively employ mobile devices to work, access to social networks, or as an entertainment means. Internet access is required for most of these services. Currently, GSM for Railways (GSM-R), which is based on the Global System for Mobile Communications (GSM), is the most widely used communication system between trains and the elements involved in operation, control, and intercommunication within the railway infrastructure. However, GSM-R is not well suited for supporting advanced services such ...
Rodríguez-Piñeiro, José — University of A Coruña
The proliferation of technologies like Internet of Things (IoT) and Industrial IoT (IIoT) has led to rapid growth in the number of connected devices and the volume of data associated with IoT applications. It is expected that more than 125 billion IoT devices will be connected to the Internet by 2030. With the plethora of wireless IoT devices, we are moving towards the connected world which is the guiding principle for the IoT. The next generation of IoT network should be capable of interconnecting heterogeneous IoT sensor or devices for effective Device-to-Device (D2D), Machine-to-Machine (M2M) communications as well as facilitating various IoT services and applications. Therefore, the next generation of IoT networks is expected to meet the capacity demand of such a network of billions of IoT devices. The current underlying wireless network is based on Orthogonal Multiple Access (OMA) ...
Rauniyar, Ashish — University of Oslo, Norway
The fourth and fifth generation wireless communication systems (4G and 5G) use a physical layer (PHY) based on multicarrier modulations for data transmission using high bandwidth. This type of modulations has shown to provide high spectral efficiency while allowing low complexity radio channel equalization. These systems use OFDMA as a mechanism for distributing the available radio resources among different users. This allocation is done by assigning a subset of subcarriers to each user in a given instant of time. This provides great flexibility to the system that allows it to adapt to both the quality of service requirements of users and the radio channel state. The media access layer (MAC) of these systems is in charge of configuring the multiple OFDMA PHY layer parameters, in addition to managing the data flows of each user, transforming the higher layer packets into ...
Carro Lagoa, Ángel — University of A Coruña
Towards 6G-Enabled Internet of Things with IRS-Empowered Backscatter-Assisted WPCNs
While 5G wireless systems offer significant enhancements to their 4G counterparts in terms of bandwidth, connectivity, latency, etc. they are unable to meet the requirements of the applications envisioned for the next decade. The demands of applications such as super-smart city, autonomous vehicles, smart health-care, etc. are much greater than what 5G systems can afford. This means that we cannot yet expect the widespread realization of IoT/IoE and have to wait for 6G to finally fulfill this long-awaited promise. As an enabler and a key player for the success of IoT/IoE, WPCN has been the center of attention in the past decade and attracted a large number of journal and conference publications. Despite the extensive efforts in this area, WPCN still lacks the required performance for being seamlessly fitted into the next generation IoT/IoE environments. The main objective of this ...
Ramezani, Parisa — The University of Sydney
Direction of Arrival Estimation and Localization Exploiting Sparse and One-Bit Sampling
Data acquisition is a necessary first step in digital signal processing applications such as radar, wireless communications and array processing. Traditionally, this process is performed by uniformly sampling signals at a frequency above the Nyquist rate and converting the resulting samples into digital numeric values through high-resolution amplitude quantization. While the traditional approach to data acquisition is straightforward and extremely well-proven, it may be either impractical or impossible in many modern applications due to the existing fundamental trade-off between sampling rate, amplitude quantization precision, implementation costs, and usage of physical resources, e.g. bandwidth and power consumption. Motivated by this fact, system designers have recently proposed exploiting sparse and few-bit quantized sampling instead of the traditional way of data acquisition in order to reduce implementation costs and usage of physical resources in such applications. However, before transition from the tradition data ...
Saeid Sedighi — University of Luxembourg
IMPROVED INDOOR LOCALIZATION WITH MACHINE LEARNING TECHNIQUES FOR IOT APPLICATIONS
With the rapid development of the internet of things (IoT) and the popularization of mobile internet applications, the location-based service (LBS) has attracted much attention due to its commercial, military, and social applications. The global positioning system (GPS) is the prominent and most widely used technology that provides localization and navigation services for outdoor location information. However, the GPS cannot be used well in indoor environments due to weak signal reception, radio multi-path effect, signal scattering, and attenuation. Therefore, localization-based systems for indoor environments have been designed using various wireless communication technologies such as Wi-Fi, ZigBee, Bluetooth, UWB, etc., depending on the context and application scenarios. Received signal strength indicator (RSSI) technology has been extensively used in indoor localization technology due to it provides accuracy, high feasibility, simplicity, and deployment practicability features. Various machine learning algorithms have been employed to ...
Madduma Wellalage Pasan Maduranga — IIC University of Technology
Stochastic Optimization in Target Positioning and Location-based Applications
Position information is important for various applications, including location-aware communications, autonomous driving, industrial internet of things (IoT). Geometry-based techniques such as time-of-arrival (TOA), time-difference-of-arrival (TDOA), and angle-of-arrival (AOA) are widely used and can be formed as optimization problems. In order to solve these optimization problems efficiently, stochastic optimization methods are discussed in this work in solving target positioning problems and tackling key issues in location-based applications. Firstly, the direction of arrival (DOA) estimation problem is studied in this work. Grid search is useful in the algorithms such as maximum likelihood estimator (MLE), MUltiple SIgnal Classification (MUSIC), etc. However, the computational cost is the main drawback. To speed up the search procedure, we implement random ferns to extract the features from the beampatterns of different DOAs and use these features to identify potential angle candidates. Then, we propose an ultrasonic air-writing ...
Chen, Hui — King Abdullah University of Science and Technology
Advanced Grassmannian Constellation Designs for Noncoherent MIMO Communications
In multiple-input multiple-output (MIMO) communications systems, the channel state information (CSI) is typically estimated at the receiver side by sending a few known pilots and then used for decoding at the receiver and/or for precoding at the transmitter. These are known as coherent schemes. However, in scenarios dominated by fast fading or massive MIMO systems dedicated to ultra-reliable low-latency communications (URLLC), getting an accurate channel estimate would require pilots to occupy a disproportionate fraction of communication resources. This becomes also a problem in machine-to-machine (M2M) communications that arise in the so-called Internet of Things (IoT). The advent of 5G and beyond (B5G) systems has introduced these novel scenarios that underscore the need for noncoherent communications schemes in which neither the transmitter nor the receiver has any knowledge about the instantaneous CSI. The Grassmannian and Stiefel manifolds play a significant role ...
Cuevas, Diego — Universidad de Cantabria
Design and Exploration of Radio Frequency Identification Systems by Rapid Prototyping
In this thesis I describe the setup and design of a flexible rapid prototyping platform for RFID systems to provide an experimental verification environment for RFID systems, that allows their real-time exploration in distinct measurement setups. Furthermore, I use this system to test the feasibility of novel signal processing algorithms for RFID reader receivers, which promise a performance increase to state-of-the-art-receivers. Three different scenarios are considered: 1. In the first scenario, a single tag communicates with a single receive antenna reader. The performance of the optimal maximum likelihood sequence decoder is identified, and losses due to channel estimation and synchronisation are discussed. Due to the wide deviation from the nominal data rate in the uplink communication, especially synchronisation shows to be a critical issue. 2. In the second scenario, the single tag communicates with a multiple receive antenna RFID reader. ...
Angerer, Christoph — Vienna University of Technology
Location and map awareness technologies in next wireless networks
In a future perspective, the need of mapping an unknown indoor environment, of localizing and retrieving information from objects with zero costs and efforts could be satisfied by the adoption of next 5G technologies. Thanks to the mix of mmW and massive arrays technologies, it will be possible to achieve a higher indoor localization accuracy without relying on a dedicated infrastructure for localization but exploiting that designed for communication purposes. Besides users’ localization and navigation objectives, mapping and thus, the capability of reconstructing indoor scenarios, will be an important field of research with the possibility of sharing environmental information via crowd-sourcing mechanisms between users. Finally, in the Internet of Things vision, it is expected that people, objects and devices will be interconnected to each other with the possibility of exchanging the acquired and estimated data including those regarding objects identification, ...
Guerra, Anna — University of Bologna
Signal Quantization and Approximation Algorithms for Federated Learning
Distributed signal or information processing using Internet of Things (IoT), facilitates real-time monitoring of signals, for example, environmental pollutants, health indicators, and electric energy consumption in a smart city. Despite the promising capabilities of IoTs, these distributed deployments often face the challenge of data privacy and communication rate constraints. In traditional machine learning, training data is moved to a data center, which requires massive data movement from distributed IoT devices to a third-party location, thus raising concerns over privacy and inefficient use of communication resources. Moreover, the growing network size, model size, and data volume combined lead to unusual complexity in the design of optimization algorithms beyond the compute capability of a single device. This necessitates novel system architectures to ensure stable and secure operations of such networks. Federated learning (FL) architecture, a novel distributed learning paradigm introduced by McMahan ...
A, Vijay — Indian Institute of Technology Bombay
Design and applications of Filterbank structures implementing Reed-Solomon codes
In nowadays communication systems, error correction provides robust data transmission through imperfect (noisy) channels. Error correcting codes are a crucial component in most storage and communication systems – wired or wireless –, e.g. GSM, UMTS, xDSL, CD/DVD. At least as important as the data integrity issue is the recent realization that error correcting codes fundamentally change the trade-offs in system design. High-integrity, low redundancy coding can be applied to increase data rate, or battery life time or by reducing hardware costs, making it possible to enter mass market. When it comes to the design of error correcting codes and their properties, there are two main theories that play an important role in this work. Classical coding theory aims at finding the best code given an available block length. This thesis focuses on the ubiquitous Reed-Solomon codes, one of the major ...
Van Meerbergen, Geert — Katholieke Universiteit Leuven
Interaction in Social eXtended Reality: A Quality of Experience Approach
The rise of immersive technologies has led to an increase in the number of use cases that adapt this type of technology within the telecommunications area. Some examples are: industrial training, multimedia content consumption and tele-training. Among all the immersive technologies, eXtended Reality through the use of Head-Mounted Displays (HMD) is the one that focuses the majority of current developments. Specifically, the Social XR paradigm frames the use of immersive technologies in a multi-user or social context. Among the decisive factors for using immersive technology in communications use cases, two stand out: the possibility of making the user believe that they has been transported to another place (sensation of presence) and the possibility of increasing interactions by allowing displacements through space (6 degrees of freedom) as well as the possibility of interacting in a more natural way. Such improvements are ...
Cortés, Carlos — Universidad Politécnica de Madrid
This thesis deals with the problem of increasing the spectrum efficiency of cellular systems, by the use of antenna array base stations. The focus of the thesis is on downlink transmission in frequency division duplex systems, i.e., systems with different up and downlink carrier frequency. In a short summary the thesis: * Proposes five reasonable propagation models. * Uses these models to design and analyze three different beamformers: The maximum desired power (MDP), the summed interference to carrier ratio minimizing (SCIR) and the generalized-SCIR beamformer. * Introduces three capacity enhancement approaches: same sector frequency reuse (SSFR), reduced cluster size without nulling (RCS-WON) and reduced cluster size with nulling (RCS-WIN). * Proposes channel allocation, power control, and beamforming algorithms for these approaches. * Estimates the ``outage probability'' (probability of insufficient quality), for SICR-SSFR, SICR-RCS-WON and SICR-RCS-WIN, using simulations as well as ...
Zetterberg, Per — Royal Institute of Technology, Sweden
Face Recognition's Grand Challenge: uncontrolled conditions under control
The number of cameras increases rapidly in squares, shopping centers, railway stations and airport halls. There are hundreds of cameras in the city center of Amsterdam. This is still modest compared to the tens of thousands of cameras in London, where citizens are expected to be filmed by more than three hundred cameras of over thirty separate Closed Circuit Television (CCTV) systems in a single day [84]. These CCTV systems include both publicly owned systems (railway stations, squares, airports) and privately owned systems (shops, banks, hotels). The main purpose of all these cameras is to detect, prevent and monitor crime and anti-social behaviour. Other goals of camera surveillance can be detection of unauthorized access, improvement of service, fire safety, etc. Since the terrorist attack on 9/11, detection and prevention of terrorist activities especially at high profiled locations such as airports, ...
Boom, Bas — University of Twente
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.