Parameter Estimation -in sparsity we trust (2017)
Sparse Modeling Heuristics for Parameter Estimation - Applications in Statistical Signal Processing
This thesis examines sparse statistical modeling on a range of applications in audio modeling, audio localizations, DNA sequencing, and spectroscopy. In the examined cases, the resulting estimation problems are computationally cumbersome, both as one often suffers from a lack of model order knowledge for this form of problems, but also due to the high dimensionality of the parameter spaces, which typically also yield optimization problems with numerous local minima. In this thesis, these problems are treated using sparse modeling heuristics, with the resulting criteria being solved using convex relaxations, inspired from disciplined convex programming ideas, to maintain tractability. The contributions to audio modeling and estimation focus on the estimation of the fundamental frequency of harmonically related sinusoidal signals, which is commonly used model for, e.g., voiced speech or tonal audio. We examine both the problems of estimating multiple audio sources ...
Adalbjörnsson, Stefan Ingi — Lund University
Group-Sparse Regression - With Applications in Spectral Analysis and Audio Signal Processing
This doctorate thesis focuses on sparse regression, a statistical modeling tool for selecting valuable predictors in underdetermined linear models. By imposing different constraints on the structure of the variable vector in the regression problem, one obtains estimates which have sparse supports, i.e., where only a few of the elements in the response variable have non-zero values. The thesis collects six papers which, to a varying extent, deals with the applications, implementations, modifications, translations, and other analysis of such problems. Sparse regression is often used to approximate additive models with intricate, non-linear, non-smooth or otherwise problematic functions, by creating an underdetermined model consisting of candidate values for these functions, and linear response variables which selects among the candidates. Sparse regression is therefore a widely used tool in applications such as, e.g., image processing, audio processing, seismological and biomedical modeling, but is ...
Kronvall, Ted — Lund University
Exploiting Sparse Structures in Source Localization and Tracking
This thesis deals with the modeling of structured signals under different sparsity constraints. Many phenomena exhibit an inherent structure that may be exploited when setting up models, examples include audio waves, radar, sonar, and image objects. These structures allow us to model, identify, and classify the processes, enabling parameter estimation for, e.g., identification, localisation, and tracking. In this work, such structures are exploited, with the goal to achieve efficient localisation and tracking of a structured source signal. Specifically, two scenarios are considered. In papers A and B, the aim is to find a sparse subset of a structured signal such that the signal parameters and source locations may be estimated in an optimal way. For the sparse subset selection, a combinatorial optimization problem is approximately solved by means of convex relaxation, with the results of allowing for different types of ...
Juhlin, Maria — Lund University
First-order Convex Optimization Methods for Signal and Image Processing
In this thesis we investigate the use of first-order convex optimization methods applied to problems in signal and image processing. First we make a general introduction to convex optimization, first-order methods and their iteration complexity. Then we look at different techniques, which can be used with first-order methods such as smoothing, Lagrange multipliers and proximal gradient methods. We continue by presenting different applications of convex optimization and notable convex formulations with an emphasis on inverse problems and sparse signal processing. We also describe the multiple-description problem. We finally present the contributions of the thesis. The remaining parts of the thesis consist of five research papers. The first paper addresses non-smooth first-order convex optimization and the trade-off between accuracy and smoothness of the approximating smooth function. The second and third papers concern discrete linear inverse problems and reliable numerical reconstruction software. ...
Jensen, Tobias Lindstrøm — Aalborg University
Non-Intrusive Speech Intelligibility Prediction
The ability to communicate through speech is important for social interaction. We rely on the ability to communicate with each other even in noisy conditions. Ideally, the speech is easy to understand but this is not always the case, if the speech is degraded, e.g., due to background noise, distortion or hearing impairment. One of the most important factors to consider in relation to such degradations is speech intelligibility, which is a measure of how easy or difficult it is to understand the speech. In this thesis, the focus is on the topic of speech intelligibility prediction. The thesis consists of an introduction to the field of speech intelligibility prediction and a collection of scientific papers. The introduction provides a background to the challenges with speech communication in noisy conditions, followed by an introduction to how speech is produced and ...
Sørensen, Charlotte — Aalborg University
Sound Source Separation in Monaural Music Signals
Sound source separation refers to the task of estimating the signals produced by individual sound sources from a complex acoustic mixture. It has several applications, since monophonic signals can be processed more efficiently and flexibly than polyphonic mixtures. This thesis deals with the separation of monaural, or, one-channel music recordings. We concentrate on separation methods, where the sources to be separated are not known beforehand. Instead, the separation is enabled by utilizing the common properties of real-world sound sources, which are their continuity, sparseness, and repetition in time and frequency, and their harmonic spectral structures. One of the separation approaches taken here use unsupervised learning and the other uses model-based inference based on sinusoidal modeling. Most of the existing unsupervised separation algorithms are based on a linear instantaneous signal model, where each frame of the input mixture signal is modeled ...
Virtanen, Tuomas — Tampere University of Technology
Sparse Array Signal Processing
This dissertation details three approaches for direction-of-arrival (DOA) estimation or beamforming in array signal processing from the perspective of sparsity. In the first part of this dissertation, we consider sparse array beamformer design based on the alternating direction method of multipliers (ADMM); in the second part of this dissertation, the problem of joint DOA estimation and distorted sensor detection is investigated; and off-grid DOA estimation is studied in the last part of this dissertation. In the first part of this thesis, we devise a sparse array design algorithm for adaptive beamforming. Our strategy is based on finding a sparse beamformer weight to maximize the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes ADMM, and admits closed-form solutions at each ADMM iteration. The algorithm convergence properties are analyzed by showing the monotonicity and boundedness of the augmented Lagrangian function. In addition, ...
Huang, Huiping — Darmstadt University of Technology
Parameter Estimation and Filtering Using Sparse Modeling
Sparsity-based estimation techniques deal with the problem of retrieving a data vector from an undercomplete set of linear observations, when the data vector is known to have few nonzero elements with unknown positions. It is also known as the atomic decomposition problem, and has been carefully studied in the field of compressed sensing. Recent findings have led to a method called basis pursuit, also known as Least Absolute Shrinkage and Selection Operator (LASSO), as a numerically reliable sparsity-based approach. Although the atomic decomposition problem is generally NP-hard, it has been shown that basis pursuit may provide exact solutions under certain assumptions. This has led to an extensive study of signals with sparse representation in different domains, providing a new general insight into signal processing. This thesis further investigates the role of sparsity-based techniques, especially basis pursuit, for solving parameter estimation ...
Panahi, Ashkan — Chalmers University of Technology
This thesis addresses a number of problems all related to parameter estimation in sensor array processing. The unifying theme is that some of these parameters are known before the measurements are acquired. We thus study how to improve the estimation of the unknown parameters by incorporating the knowledge of the known parameters; exploiting this knowledge successfully has the potential to dramatically improve the accuracy of the estimates. For covariance matrix estimation, we exploit that the true covariance matrix is Kronecker and Toeplitz structured. We then devise a method to ascertain that the estimates possess this structure. Additionally, we can show that our proposed estimator has better performance than the state-of-art when the number of samples is low, and that it is also efficient in the sense that the estimates have Cramér-Rao lower Bound (CRB) equivalent variance. In the direction of ...
Wirfält, Petter — KTH Royal Institute of Technology
General Approaches for Solving Inverse Problems with Arbitrary Signal Models
Ill-posed inverse problems appear in many signal and image processing applications, such as deblurring, super-resolution and compressed sensing. The common approach to address them is to design a specific algorithm, or recently, a specific deep neural network, for each problem. Both signal processing and machine learning tactics have drawbacks: traditional reconstruction strategies exhibit limited performance for complex signals, such as natural images, due to the hardness of their mathematical modeling; while modern works that circumvent signal modeling by training deep convolutional neural networks (CNNs) suffer from a huge performance drop when the observation model used in training is inexact. In this work, we develop and analyze reconstruction algorithms that are not restricted to a specific signal model and are able to handle different observation models. Our main contributions include: (a) We generalize the popular sparsity-based CoSaMP algorithm to any signal ...
Tirer, Tom — Tel Aviv University
Sparse Sensing for Statistical Inference: Theory, Algorithms, and Applications
In today's society, we are flooded with massive volumes of data in the order of a billion gigabytes on a daily basis from pervasive sensors. It is becoming increasingly challenging to locally store and transport the acquired data to a central location for signal/data processing (i.e., for inference). To alleviate these problems, it is evident that there is an urgent need to significantly reduce the sensing cost (i.e., the number of expensive sensors) as well as the related memory and bandwidth requirements by developing unconventional sensing mechanisms to extract as much information as possible yet collecting fewer data. The first aim of this thesis is to develop theory and algorithms for data reduction. We develop a data reduction tool called sparse sensing, which consists of a deterministic and structured sensing function (guided by a sparse vector) that is optimally designed ...
Chepuri, Sundeep Prabhakar — Delft University of Technology
Signal Quantization and Approximation Algorithms for Federated Learning
Distributed signal or information processing using Internet of Things (IoT), facilitates real-time monitoring of signals, for example, environmental pollutants, health indicators, and electric energy consumption in a smart city. Despite the promising capabilities of IoTs, these distributed deployments often face the challenge of data privacy and communication rate constraints. In traditional machine learning, training data is moved to a data center, which requires massive data movement from distributed IoT devices to a third-party location, thus raising concerns over privacy and inefficient use of communication resources. Moreover, the growing network size, model size, and data volume combined lead to unusual complexity in the design of optimization algorithms beyond the compute capability of a single device. This necessitates novel system architectures to ensure stable and secure operations of such networks. Federated learning (FL) architecture, a novel distributed learning paradigm introduced by McMahan ...
A, Vijay — Indian Institute of Technology Bombay
Distributed Signal Processing Algorithms for Wireless Networks
Distributed signal processing algorithms have become a key approach for statistical inference in wireless networks and applications such as wireless sensor networks and smart grids. It is well known that distributed processing techniques deal with the extraction of information from data collected at nodes that are distributed over a geographic area. In this context, for each specific node, a set of neighbor nodes collect their local information and transmit the estimates to a specific node. Then, each specific node combines the collected information together with its local estimate to generate an improved estimate. In this thesis, novel distributed cooperative algorithms for inference in ad hoc, wireless sensor networks and smart grids are investigated. Low-complexity and effective algorithms to perform statistical inference in a distributed way are devised. A number of innovative approaches for dealing with node failures, compression of data ...
Xu, Songcen — University of York
Sparse approximation and dictionary learning with applications to audio signals
Over-complete transforms have recently become the focus of a wide wealth of research in signal processing, machine learning, statistics and related fields. Their great modelling flexibility allows to find sparse representations and approximations of data that in turn prove to be very efficient in a wide range of applications. Sparse models express signals as linear combinations of a few basis functions called atoms taken from a so-called dictionary. Finding the optimal dictionary from a set of training signals of a given class is the objective of dictionary learning and the main focus of this thesis. The experimental evidence presented here focuses on the processing of audio signals, and the role of sparse algorithms in audio applications is accordingly highlighted. The first main contribution of this thesis is the development of a pitch-synchronous transform where the frame-by-frame analysis of audio data ...
Barchiesi, Daniele — Queen Mary University of London
Speech Modeling and Robust Estimation for Diagnosis of Parkinson's Disease
According to the Parkinson’s Foundation, more than 10 million people world- wide suffer from Parkinson’s disease (PD). The common symptoms are tremor, muscle rigidity and slowness of movement. There is no cure available cur- rently, but clinical intervention can help alleviate the symptoms significantly. Recently, it has been found that PD can be detected and telemonitored by voice signals, such as sustained phonation /a/. However, the voiced-based PD detector suffers from severe performance degradation in adverse envi- ronments, such as noise, reverberation and nonlinear distortion, which are common in uncontrolled settings. In this thesis, we focus on deriving speech modeling and robust estima- tion algorithms capable of improving the PD detection accuracy in adverse environments. Robust estimation algorithms using parametric modeling of voice signals are proposed. We present both segment-wise and sample-wise robust pitch tracking algorithms using the harmonic model. ...
Shi, Liming — Aalborg University
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.