Assessment and Real Time Implementation of Wireless Communications Systems and Applications in Transportation Systems

The fourth and fifth generation wireless communication systems (4G and 5G) use a physical layer (PHY) based on multicarrier modulations for data transmission using high bandwidth. This type of modulations has shown to provide high spectral efficiency while allowing low complexity radio channel equalization. These systems use OFDMA as a mechanism for distributing the available radio resources among different users. This allocation is done by assigning a subset of subcarriers to each user in a given instant of time. This provides great flexibility to the system that allows it to adapt to both the quality of service requirements of users and the radio channel state. The media access layer (MAC) of these systems is in charge of configuring the multiple OFDMA PHY layer parameters, in addition to managing the data flows of each user, transforming the higher layer packets into ...

Carro Lagoa, Ángel — University of A Coruña


Distributed Caching Methods in Small Cell Networks

This thesis explores one of the key enablers of 5G wireless networks leveraging small cell network deployments, namely proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context-awareness and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user demands, via caching at base stations and users' devices. In order to show the effectiveness of proactive caching techniques, we tackle the problem from two different perspectives, namely theoretical and practical ones. In the first part of this thesis, we use tools from stochastic geometry to model and analyse the theoretical gains of caching at base stations. In particular, we focus on 1) single-tier networks where small base stations with limited storage are deployed, 2) multi-tier networks with limited backhaul, and) multi-tier clustered networks with two different topologies, namely coverage-aided and capacity-aided deployments. Therein, ...

Bastug, Ejder — CentraleSupélec, Université Paris-Saclay


Full-Duplex Device-to-Device Communication for 5G Network

With the rapidly growing of the customers’ data traffic demand, improving the system capacity and increasing the user throughput have become essential concerns for the future fifth-generation (5G) wireless communication network. In this context, device-to-device (D2D) communication and in-band full-duplex (FD) are proposed as potential solutions to increase the spatial spectrum utilization and the user rate in a cellular network. D2D allows two nearby devices to communicate without base station (BS) participation or with limited participation. On the other hand, FD communication enables simultaneous transmission and reception in the same frequency band. Due to the short distance property of D2D links, exploiting the FD technology in D2D communication is an excellent choice to further improve the cellular spectrum efficiency and the users’ throughput. However, practical FD transceivers add new challenges for D2D communication. For instance, the existing FD devices cannot ...

Hussein CHOUR — CentraleSupélec (CS) and Université Libanaise (UL)


Coordination Strategies for Interference Management in MIMO Dense Cellular Networks

The envisioned rapid and exponential increase of wireless data traffic demand in the next years imposes rethinking current wireless cellular networks due to the scarcity of the available spectrum. In this regard, three main drivers are considered to increase the capacity of today's most advanced (4G systems) and future (5G systems and beyond) cellular networks: i) use more bandwidth (more Hz) through spectral aggregation, ii) enhance the spectral efficiency per base station (BS) (more bits/s/Hz/BS) by using multiple antennas at BSs and users (i.e. MIMO systems), and iii) increase the density of BSs (more BSs/km2) through a dense and heterogeneous deployment (known as dense heterogeneous cellular networks). We focus on the last two drivers. First, the use of multi-antenna systems allows exploiting the spatial dimension for several purposes: improving the capacity of a conventional point-to-point wireless link, increasing the number ...

Lagen, Sandra — Universitat Politecnica de Catalunya


Cooperative Strategies for Inter-cell Interference Management in Dense Cellular Networks

The number of mobile devices and the amount of traffic generated by them has grown at a tremendous pace in the last years and it is expected to continue growing. This growth contrasts with the limited bandwidth that needs to be shared among users. Network densification has been proposed as a promising technique to satisfy the previous demands over a shared bandwidth. This is realized by increasing the density of base stations deployed. Although network densification can improve the signal-to-interference-plus-noise ratio (SINR) of the users located close to the serving base station, it can also increase the inter-cell interference received by other users. In current cellular networks, base stations deal with inter-cell interference by splitting the bandwidth in two parts. The first one is assigned to users with low interference (typically in the cell center) and it is reused in ...

Torrea Durán, Rodolfo — KU Leuven


Contributions to Analysis and Mitigation of Cochannel Interference in Cellular Wireless Networks

Cellular wireless networks have become a commodity. We use our cellular devices every day to connect to others, to conduct business, for entertainment. Strong demand for wireless access has made corresponding parts of radio spectrum very valuable. Consequently, network operators and their suppliers are constantly being pressured for its efficient use. Unlike the first and second generation cellular networks, current generations do not therefore separate geographical sites in frequency. This universal frequency reuse, combined with continuously increasing spatial density of the transmitters, leads to challenging interference levels in the network. This dissertation collects several contributions to analysis and mitigation of interference in cellular wireless networks. The contributions are categorized and set in the context of prior art based on key characteristics, then they are treated one by one. The first contribution encompasses dynamic signaling that measures instantaneous interference situations and ...

Cierny, Michal — Aalto University


Energy Efficient Network for Rural Broadband Access

This thesis proposes and discusses aspects of a low-cost wireless network called “Hopscotch” as a potential solution to the rural broadband problem. Providing broadband internet access to rural locations is challenging due to the long distances between internet backbone and households, the sparse population density and difficult terrain. Hopscotch uses a network of renewable powered base stations, termed “WindFi”, connected by point-to-point links, to deliver internet access to rural communities. A combination of frequency bands are used within Hopscotch. Standard IEEE 802.11 5GHz WiFi access technology is used for high capacity links, and an ultra high frequency TV “white space” spectrum overlay in the 600-800 MHz band provides long distance coverage. The advantages of “white space” spectrum are demonstrated for a rural wireless scenario; reducing the number of base stations required to cover a community and decreasing the transmit power ...

McGuire, Colin — University of Strathclyde


System Level Modeling and Evaluation of Heterogeneous Cellular Networks

The cumulative impact of co-channel interferers, commonly referred to as aggregate network interference, is one of the main performance limiting factors in today’s mobile cellular networks. Thus, its careful statistical description is decisive for system analysis and design. A system model for interference analysis is required to capture essential network variation effects, such as base station deployment- and signal propagation characteristics. Furthermore it should be simple and tractable so as to enable first-order insights on design fundamentals and rapid exchange of new ideas. Interference modeling has posed a challenge ever since the establishment of traditional macro cellular deployments. The recent emergence of heterogeneous network topologies complicates matters by contesting many established aspects of time-honored approaches. This thesis presents user-centric system models that enable to investigate scenarios with an asymmetric interference impact. The first approach simplifies the interference analysis in a ...

Taranetz, Martin — Technische Universität Wien


Enabling Technologies and Cyber-Physical Systems for Mission-Critical Scenarios

Reliable transport systems, defense, public safety and quality assurance in the Industry 4.0 are essential in a modern society. In a mission-critical scenario, a mission failure would jeopardize human lives and put at risk some other assets whose impairment or loss would significantly harm society or business results. Even small degradations of the communications supporting the mission could have large and possibly dire consequences. On the one hand, mission-critical organizations wish to utilize the most modern, disruptive and innovative communication systems and technologies, and yet, on the other hand, need to comply with strict requirements, which are very different to those of non critical scenarios. The aim of this thesis is to assess the feasibility of applying emerging technologies like Internet of Things (IoT), Cyber-Physical Systems (CPS) and 4G broadband communications in mission-critical scenarios along three key critical infrastructure sectors: ...

Fraga-Lamas, Paula — University of A Coruña


System Level Analysis of LTE-Advanced: with Emphasis on Multi-Component Carrier Management

This PhD thesis focuses on system level analysis of Multi-Component Carrier (CC) management for Long Term Evolution (LTE)-Advanced. Cases where multiple CCs are aggregated to form a larger bandwidth are studied. The analysis is performed for both local area and wide area networks. In local area, Time Division Duplexing (TDD) is chosen as the duplexing mode in this study. The performance with different network time synchronization levels is compared, and it is observed that achieving time synchronization significantly improves the uplink performance without penalizing much of the downlink transmission. Next the technique of frequency reuse is investigated. As compared to reuse-1, using different frequency channels in neighboring cells reduces the interference to offer large performance gain. To avoid the frequency planning, several decentralized algorithms are developed for interference reduction. Compared to the case of reuse-1, they achieve a gain of ...

Wang, Yuanye — Aalborg University


Self-organized Femtocells: a Time Difference Learning Approach

The use model of mobile networks has drastically changed in recent years. Next generation devices and new applications have made the availability of high quality wireless data everywhere a necessity for mobile users. Thus, cellular networks must be highly improved in terms of coverage and capacity. Networks that include smart entities and functionalities, and that allow to fulfil all the mobile networks’ new requirements are called heterogeneous networks. One key component in heterogeneous networks is femtocells. Femtocells are low range, low power mobile base stations deployed by the end consumers, which underlay the macrocell system and provide a solution to the problem of indoor coverage for mobile communications. Femtocells can reuse the radio spectrum and, thereby, they allow increasing the spectral efficiency. Moreover, under appropriate algorithms for interference control, they give a viable alternative to the problem of spectrum static ...

A. Galindo-Serrano — Centre Tecnològic de Telecomuniacions de Catalunya (CTTC)


Multiantenna Cellular Communications: Channel Estimation, Feedback, and Resource Allocation

The use of multiple antennas at base stations and user devices is a key component in the design of cellular communication systems that can meet the capacity demands of tomorrow. The downlink transmission from base stations to users is particularly limiting, both from a theoretical and a practical perspective, since user devices should be simple and power-efficient, and because many applications primarily create downlink traffic (e.g., video streaming). The potential gain of employing multiple antennas for downlink transmission is well recognized: the total data throughput increases linearly with the number of transmit antennas if the spatial dimension is exploited for simultaneous transmission to multiple users. In the design of practical cellular systems, the actual benefit of multiuser multiantenna transmission is limited by a variety of factors, including acquisition and accuracy of channel information, transmit power, channel conditions, cell density, user ...

Emil Björnson — KTH Royal Institute of Technology


Limited Feedback Transceiver Design for Downlink MIMO OFDM Cellular Networks

Feedback in wireless communications is tied to a long-standing and successful history, facilitating robust and spectrally efficient transmission over the uncertain wireless medium. Since the application of multiple antennas at both ends of the communication link, enabling multiple-input multiple-output (MIMO) transmission, the importance of feedback information to achieve the highest performance is even more pronounced. Especially when multiple antennas are employed by the transmitter to handle the interference between multiple users, channel state information (CSI) is a fundamental prerequisite. The corresponding multi-user MIMO, interference alignment and coordination techniques are considered as a central part of future cellular networks to cope with the growing inter-cell-interference, caused by the unavoidable densification of base stations to support the exponentially increasing demand on network capacities. However, this vision can only be implemented with efficient feedback algorithms that provide accurate CSI at the transmitter without ...

Schwarz, Stefan — Vienna University of Technology


Joint Downlink Beamforming and Discrete Resource Allocation Using Mixed-Integer Programming

Multi-antenna processing is widely adopted as one of the key enabling technologies for current and future cellular networks. Particularly, multiuser downlink beamforming (also known as space-division multiple access), in which multiple users are simultaneously served with spatial transmit beams in the same time and frequency resource, achieves high spectral efficiency with reduced energy consumption. To harvest the potential of multiuser downlink beamforming in practical systems, optimal beamformer design shall be carried out jointly with network resource allocation. Due to the specifications of cellular standards and/or implementation constraints, resource allocation in practice naturally necessitates discrete decision makings, e.g., base station (BS) association, user scheduling and admission control, adaptive modulation and coding, and codebook-based beamforming (precoding). This dissertation focuses on the joint optimization of multiuser downlink beamforming and discrete resource allocation in modern cellular networks. The problems studied in this thesis involve ...

Cheng, Yong — Technische Universität Darmstadt


A High-Performance, Efficient and Reliable Receiver for Bluetooth Signals

The key defining feature of a software defined radio is the flexibility to reconfigure itself to different modes, frequency bands, or wireless standards. This is achieved by, for example, running software modules on a general purpose digital signal processor. The complexity of a common hardware platform shared by Bluetooth and a relatively costly wireless standard like Wi-Fi, must have the capacity to handle the more demanding system. In such scenarios, there will be extra resources available when Bluetooth is running and Wi-Fi is in an idle state. This thesis contains suggestions on the most effective way to use this surplus capability to improve the reception of Bluetooth signals. Our approach involves selecting the most appropriate receiver capable of very low bit error ratio, but ensuring that it is realised in a very efficient manner; and providing algorithms to compensate for ...

Tibenderana, Charles — University of Southampton

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.