Classification of brain tumors based on magnetic resonance spectroscopy

Nowadays, diagnosis and treatment of brain tumors is based on clinical symptoms, radiological appearance, and often histopathology. Magnetic resonance imaging (MRI) is a major noninvasive tool for the anatomical assessment of tumors in the brain. However, several diagnostic questions, such as the type and grade of the tumor, are difficult to address using MRI. The histopathology of a tissue specimen remains the gold standard, despite the associated risks of surgery to obtain a biopsy. In recent years, the use of magnetic resonance spectroscopy (MRS), which provides a metabolic profile, has gained a lot of interest for a more detailed and specific noninvasive evaluation of brain tumors. In particular, magnetic resonance spectroscopic imaging (MRSI) is attractive as this may also enable to visualize the heterogeneous spatial extent of tumors, both inside and outside the MRI detectable lesion. As manual, individual, viewing ...

Luts, Jan — Katholieke Universiteit Leuven


Subspace-based quantification of magnetic resonance spectroscopy data using biochemical prior knowledge

Nowadays, Nuclear Magnetic Resonance (NMR) is widely used in oncology as a non-invasive diagnostic tool in order to detect the presence of tumor regions in the human body. An application of NMR is Magnetic Resonance Imaging, which is applied in routine clinical practice to localize tumors and determine their size. Magnetic Resonance Imaging is able to provide an initial diagnosis, but its ability to delineate anatomical and pathological information is significantly improved by its combination with another NMR application, namely Magnetic Resonance Spectroscopy. The latter reveals information on the biochemical profile tissues, thereby allowing clinicians and radiologists to identify in a non{invasive way the different tissue types characterizing the sample under investigation, and to study the biochemical changes underlying a pathological situation. In particular, an NMR application exists which provides spatial as well as biochemical information. This application is called ...

Laudadio, Teresa — Katholieke Universiteit Leuven


Advanced signal processing for magnetic resonance spectroscopy

Assertive diagnosis of cancer, Alzheimer’s disease, epilepsy and other metabolic diseases is essential to provide patients with the adequate treatment. Recently, different invasive and non-invasive techniques have been developed for this purpose, nevertheless, due to their harmless properties the non-invasive techniques have gained more value. Magnetic Resonance is a well-known non-invasive technique that provides spectra (metabolite peaks) and images (anatomical structures) of the examined tissue. In Magnetic Resonance Spectroscopy (MRS), molecules containing certain excitable nuclei, such as 1H, provide the metabolite information. As a consequence, the peaks in the MR spectra correspond to observable metabolites which are the biomarkers of diseases. Finally, metabolite concentrations are computed and compared against normal values in order to establish the diagnosis. The method to obtain such amplitudes is also called quantification and its accuracy is essential for diagnosis assessment. Quantification of MRS signals is ...

Osorio Garcia, Maria Isabel — KU Leuven


Machine learning methods for multiple sclerosis classification and prediction using MRI brain connectivity

In this thesis, the power of Machine Learning (ML) algorithms is combined with brain connectivity patterns, using Magnetic Resonance Imaging (MRI), for classification and prediction of Multiple Sclerosis (MS). White Matter (WM) as well as Grey Matter (GM) graphs are studied as connectome data types. The thesis addresses three main research objectives. The first objective aims to generate realistic brain connectomes data for improving the classification of MS clinical profiles in cases of data scarcity and class imbalance. To solve the problem of limited and imbalanced data, a Generative Adversarial Network (GAN) was developed for the generation of realistic and biologically meaningful connec- tomes. This network achieved a 10% better MS classification performance compared to classical approaches. As second research objective, we aim to improve classification of MS clinical profiles us- ing morphological features only extracted from GM brain tissue. ...

Barile, Berardino — KU Leuven


Signal processing and classification for magnetic resonance spectroscopic data with clinical applications

Over the last decades, Magnetic Resonance Imaging (MRI) has taken a leading role in the study of human body and it is widely used in clinical diagnosis. In vivo and ex vivo Magnetic Resonance Spectroscopic (MRS) techniques can additionally provide valuable metabolic information as compared to MRI and are gaining more clinical interest. The analysis of MRS data is a complex procedure and requires several preprocessing steps aiming to improve the quality of the data and to extract the most relevant features before any classification algorithm can be successfully applied. In this thesis a new approach to quantify magnetic resonance spectroscopic imaging (MRSI) data and therefore to obtain improved metabolite estimates is proposed. Then an important part is focusing on improving the diagnosis of glial brain tumors which are characterized by an extensive heterogeneity since various intramural histopathological properties such ...

Croitor Sava, Anca Ramona — KU Leuven


Unsupervised and semi-supervised Non-negative Matrix Factorization methods for brain tumor segmentation using multi-parametric MRI data

Gliomas represent about 80% of all malignant primary brain tumors. Despite recent advancements in glioma research, patient outcome remains poor. The 5 year survival rate of the most common and most malignant subtype, i.e. glioblastoma, is about 5%. Magnetic resonance imaging (MRI) has become the imaging modality of choice in the management of brain tumor patients. Conventional MRI (cMRI) provides excellent soft tissue contrast without exposing the patient to potentially harmful ionizing radiation. Over the past decade, advanced MRI modalities, such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have gained interest in the clinical field, and their added value regarding brain tumor diagnosis, treatment planning and follow-up has been recognized. Tumor segmentation involves the imaging-based delineation of a tumor and its subcompartments. In gliomas, segmentation plays an important role in treatment planning as well ...

Sauwen, Nicolas — KU Leuven


Learning from structured EEG and fMRI data supporting the diagnosis of epilepsy

Epilepsy is a neurological condition that manifests in epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. Epilepsy cannot be cured and in many cases is not controlled by medication either. Surgical resection of the region responsible for generating the epileptic seizures might offer remedy for these patients. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) measure the changes of brain activity in time over different locations of the brain. As such, they provide valuable information on the nature, the timing and the spatial origin of the epileptic activity. Unfortunately, both techniques record activity of different brain and artefact sources as well. Hence, EEG and fMRI signals are characterised by low signal to noise ratio. Data quality and the vast amount ...

Hunyadi, Borbála — KU Leuven


Characterization of the neurometabolic coupling in the premature brain using NIRS and EEG

Every year, an estimated 15 million babies are born preterm, that is, before 37 weeks of gestation. This number is rising in all countries and currently represents more than 1 in 10 babies, affecting families all over the world. During the last decades, the survival rate of prematurely born neonates has steadily increased, mainly as a result of medical and technical progress in neonatal intensive care. The very preterm infants, which represent up to 10% of the preterm infants in the EU, remain at risk for adverse outcome and neurodevelopmental disability. These maladaptive outcomes have a severe effect on the children’s quality of life and a huge economic impact on society. In order to reduce this burden and improve neonatal care in general, appropriate tools need to be developed to identify the neonates with a higher risk of adverse outcomes. ...

Hendrikx, Dries — KU Leuven


Combining anatomical and spectral information to enhance MRSI resolution and quantification: Application to Multiple Sclerosis

Multiple sclerosis is a progressive autoimmune disease that a˙ects young adults. Magnetic resonance (MR) imaging has become an integral part in monitoring multiple sclerosis disease. Conventional MR imaging sequences such as fluid attenuated inversion recovery imaging have high spatial resolution, and can visualise the presence of focal white matter brain lesions in multiple sclerosis disease. Manual delineation of these lesions on conventional MR images is time consuming and su˙ers from intra and inter-rater variability. Among the advanced MR imaging techniques, MR spectroscopic imaging can o˙er complementary information on lesion characterisation compared to conventional MR images. However, MR spectroscopic images have low spatial resolution. Therefore, the aim of this thesis is to automatically segment multiple sclerosis lesions on conventional MR images and use the information from high-resolution conventional MR images to enhance the resolution of MR spectroscopic images. Automatic single time ...

Jain, Saurabh — KU Leuven


Geometric Approach to Statistical Learning Theory through Support Vector Machines (SVM) with Application to Medical Diagnosis

This thesis deals with problems of Pattern Recognition in the framework of Machine Learning (ML) and, specifically, Statistical Learning Theory (SLT), using Support Vector Machines (SVMs). The focus of this work is on the geometric interpretation of SVMs, which is accomplished through the notion of Reduced Convex Hulls (RCHs), and its impact on the derivation of new, efficient algorithms for the solution of the general SVM optimization task. The contributions of this work is the extension of the mathematical framework of RCHs, the derivation of novel geometric algorithms for SVMs and, finally, the application of the SVM algorithms to the field of Medical Image Analysis and Diagnosis (Mammography). Geometric SVM Framework's extensions: The geometric interpretation of SVMs is based on the notion of Reduced Convex Hulls. Although the geometric approach to SVMs is very intuitive, its usefulness was restricted by ...

Mavroforakis, Michael — University of Athens


Statistical Signal and Image Processing Techniques in Corneal Modeling

In this thesis, we consider two interrelated problems, which are the enhancement of videokeratoscopic images for more accurate corneal topography estimation and model-order selection of corneal surfaces when expanded using orthogonal Zernike polynomials. Corneal topography estimation that is based on the Placido disk principle relies on good quality of pre-corneal tear film and sufficiently wide eyelid (palpebral) aperture to avoid reflections from eyelashes. However, in practice, these conditions are not always fulfilled resulting in missing regions, smaller corneal coverage, and subsequently poorer estimates of corneal topography. Our aim is to enhance the standard operating range of a Placido disk videokeratoscope to obtain reliable corneal topography estimates in patients with poor tear film quality, such as encountered in those diagnosed with dry eye, and with narrower palpebral apertures as in the case of Asian subjects. This is achieved by incorporating in ...

Alkhaldi, Weaam — Technical University of Darmstad


Least squares support vector machines classification applied to brain tumour recognition using magnetic resonance spectroscopy

Magnetic Resonance Spectroscopy (MRS) is a technique which has evolved rapidly over the past 15 years. It has been used specifically in the context of brain tumours and has shown very encouraging correlations between brain tumour type and spectral pattern. In vivo MRS enables the quantification of metabolite concentrations non-invasively, thereby avoiding serious risks to brain damage. While Magnetic Resonance Imaging (MRI) is commonly used for identifying the location and size of brain tumours, MRS complements it with the potential to provide detailed chemical information about metabolites present in the brain tissue and enable an early detection of abnormality. However, the introduction of MRS in clinical medicine has been difficult due to problems associated with the acquisition of in vivo MRS signals from living tissues at low magnetic fields acceptable for patients. The low signal-to-noise ratio makes accurate analysis of ...

Lukas, Lukas — Katholieke Universiteit Leuven


Unsupervised Models for White Matter Fiber-Bundles Analysis in Multiple Sclerosis

Diffusion Magnetic Resonance Imaging (dMRI) is a meaningful technique for white matter (WM) fiber-tracking and microstructural characterization of axonal/neuronal integrity and connectivity. By measuring water molecules motion in the three directions of space, numerous parametric maps can be reconstructed. Among these, fractional anisotropy (FA), mean diffusivity (MD), and axial (λa) and radial (λr) diffusivities have extensively been used to investigate brain diseases. Overall, these findings demonstrated that WM and grey matter (GM) tissues are subjected to numerous microstructural alterations in multiple sclerosis (MS). However, it remains unclear whether these tissue alterations result from global processes, such as inflammatory cascades and/or neurodegenerative mechanisms, or local inflammatory and/or demyelinating lesions. Furthermore, these pathological events may occur along afferent or afferent WM fiber pathways, leading to antero- or retrograde degeneration. Thus, for a better understanding of MS pathological processes like its spatial and ...

Stamile, Claudio — Université Claude Bernard Lyon 1, KU Leuven


Integration of human color vision models into high quality image compression

Strong academic and commercial interest in image compression has resulted in a number of sophisticated compression techniques. Some of these techniques have evolved into international standards such as JPEG. However, the widespread success of JPEG has slowed the rate of innovation in such standards. Even most recent techniques, such as those proposed in the JPEG2000 standard, do not show significantly improved compression performance; rather they increase the bitstream functionality. Nevertheless, the manifold of multimedia applications demands for further improvements in compression quality. The problem of stagnating compression quality can be overcome by exploiting the limitations of the human visual system (HVS) for compression purposes. To do so, commonly used distortion metrics such as mean-square error (MSE) are replaced by an HVS-model-based quality metric. Thus, the "visual" quality is optimized. Due to the tremendous complexity of the physiological structures involved in ...

Nadenau, Marcus J. — Swiss Federal Institute of Technology


Regularized estimation of fractal attributes by convex minimization for texture segmentation: joint variational formulations, fast proximal algorithms and unsupervised selection of regularization para

In this doctoral thesis several scale-free texture segmentation procedures based on two fractal attributes, the Hölder exponent, measuring the local regularity of a texture, and local variance, are proposed.A piecewise homogeneous fractal texture model is built, along with a synthesis procedure, providing images composed of the aggregation of fractal texture patches with known attributes and segmentation. This synthesis procedure is used to evaluate the proposed methods performance.A first method, based on the Total Variation regularization of a noisy estimate of local regularity, is illustrated and refined thanks to a post-processing step consisting in an iterative thresholding and resulting in a segmentation.After evidencing the limitations of this first approach, deux segmentation methods, with either "free" or "co-located" contours, are built, taking in account jointly the local regularity and the local variance.These two procedures are formulated as convex nonsmooth functional minimization problems.We ...

Pascal, Barbara — École Normale Supérieure de Lyon

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.