Distributed Processing Techniques for Parameter Estimation and Efficient Data Gathering in Wireless Communication and Sensor Networks

This dissertation deals with the distributed processing techniques for parameter estimation and efficient data-gathering in wireless communication and sensor networks. The estimation problem consists in inferring a set of parameters from temporal and spatial noisy observations collected by different nodes that monitor an area or field. The objective is to derive an estimate that is as accurate as the one that would be obtained if each node had access to the information across the entire network. With the aim of enabling an energy aware and low-complexity distributed implementation of the estimation task, several useful optimization techniques that generally yield linear estimators were derived in the literature. Up to now, most of the works considered that the nodes are interested in estimating the same vector of global parameters. This scenario can be viewed as a special case of a more general ...

Bogdanovic, Nikola — University of Patras


Adaptive Algorithms and Variable Structures for Distributed Estimation

The analysis and design of new non-centralized learning algorithms for potential application in distributed adaptive estimation is the focus of this thesis. Such algorithms should be designed to have low processing requirement and to need minimal communication between the nodes which would form a distributed network. They ought, moreover, to have acceptable performance when the nodal input measurements are coloured and the environment is dynamic. Least mean square (LMS) and recursive least squares (RLS) type incremental distributed adaptive learning algorithms are first introduced on the basis of a Hamiltonian cycle through all of the nodes of a distributed network. These schemes require each node to communicate only with one of its neighbours during the learning process. An original steady-steady performance analysis of the incremental LMS algorithm is performed by exploiting a weighted spatial-temporal energy conservation formulation. This analysis confirms that ...

Li, Leilei — Loughborough University


Signal processing algorithms for wireless acoustic sensor networks

Recent academic developments have initiated a paradigm shift in the way spatial sensor data can be acquired. Traditional localized and regularly arranged sensor arrays are replaced by sensor nodes that are randomly distributed over the entire spatial field, and which communicate with each other or with a master node through wireless communication links. Together, these nodes form a so-called ‘wireless sensor network’ (WSN). Each node of a WSN has a local sensor array and a signal processing unit to perform computations on the acquired data. The advantage of WSNs compared to traditional (wired) sensor arrays, is that many more sensors can be used that physically cover the full spatial field, which typically yields more variety (and thus more information) in the signals. It is likely that future data acquisition, control and physical monitoring, will heavily rely on this type of ...

Bertrand, Alexander — Katholieke Universiteit Leuven


Distributed Signal Processing Algorithms for Acoustic Sensor Networks

In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...

Szurley, Joseph — KU Leuven


Distributed Signal Processing Algorithms for Acoustic Sensor Networks

In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...

Szurley, Joseph C. — KU Leuven


Transmission strategies for wireless energy harvesting nodes

Over the last few decades, transistor miniaturization has enabled a tremendous increase in the processing capability of commercial electronic devices, which, combined with the reduction of production costs, has tremendously fostered the usage of the Information and Communications Technologies (ICTs) both in terms of number of users and required data rates. In turn, this has led to a tremendous increment in the energetic demand of the ICT sector, which is expected to further grow during the upcoming years, reaching unsustainable levels of greenhouse gas emissions as reported by the European Council. Additionally, the autonomy of battery operated devices is getting reduced year after year since battery technology has not evolved fast enough to cope with the increase of energy consumption associated to the growth of the node’s processing capability. Energy harvesting, which is known as the process of collecting energy ...

Gregori, Maria — Centre Tecnològic de Telecomunicacions de Catalunya


Energy-Efficient Spectrum Sensing for Cognitive Radio Networks

Dynamic spectrum access employing cognitive radios has been proposed, in order to opportunistically use underutilized spectrum portions of a heavily licensed electromagnetic spectrum. Cognitive radios opportunistically share the spectrum, while avoiding any harmful interference to the primary licensed users. One major category of cognitive radios consists of is interweave cognitive radios. In this category, cognitive radios employ spectrum sensing to detect the empty bands of the radio spectrum, also known as spectrum holes. Upon detection of such a spectrum hole, cognitive radios dynamically share this empty band. However, as soon as the primary user appears in the corresponding band, cognitive radios have to vacate the band and look for a new spectrum hole. This way, reliable spectrum sensing becomes a key functionality of a cognitive radio network. The hidden terminal problem and fading effects have been shown to limit the ...

Maleki, Sina — TU Delft


Sensing physical fields: Inverse problems for the diffusion equation and beyond

Due to significant advances made over the last few decades in the areas of (wireless) networking, communications and microprocessor fabrication, the use of sensor networks to observe physical phenomena is rapidly becoming commonplace. Over this period, many aspects of sensor networks have been explored, yet a thorough understanding of how to analyse and process the vast amounts of sensor data collected remains an open area of research. This work, therefore, aims to provide theoretical, as well as practical, advances this area. In particular, we consider the problem of inferring certain underlying properties of the monitored phenomena, from our sensor measurements. Within mathematics, this is commonly formulated as an inverse problem; whereas in signal processing, it appears as a (multidimensional) sampling and reconstruction problem. Indeed it is well known that inverse problems are notoriously ill-posed and very demanding to solve; meanwhile ...

Murray-Bruce, John — Imperial College London


Energy-Efficient Target Tracking of Mobile Targets through Wireless Sensor Networks - Cross-layer Design and Optimization

In recent years, advances in signal processing have led the wireless sensor networks to be capable of mobility. The signal processing in a wireless sensor network differs from that of a traditional wireless network mainly in two important aspects. Unlike traditional wireless networks, in a sensor network the signal processing is performed in a fully distributed manner as the sensor measurements in a distributed fashion across the network collected. Additionally, due to the limited onboard resource of a sensor network it is essential to develop energy and bandwidth efficient signal processing algorithms. The thesis is devoted to discuss the state of the arte of algorithms commonly known as tracking algorithms. Although tracking algorithms have only been attracting research and development attention recently, already a wide literature and great variety of proposed approaches regarding the topic exist. The dissertation focus on ...

Arienzo, Loredana — University of Salerno


Towards Zero-Power Wireless Machine-to-Machine Networks

This thesis aims at contributing to overcome two of the main challenges for the deployment of highly dense wireless M2M networks in data collection scenarios for the Internet of Things: the management of massive numbers of end-devices that attempt to get access to the wireless channel; and the need to extend the network lifetime to reduce maintenance costs. In order to solve these challenges, two complementary strategies are considered. Firstly, the thesis focuses on the design, analysis and performance evaluation of random and hybrid access protocols that can handle abrupt transitions in the traffic load and minimize the energy consumption devoted to communications. And secondly, the use of energy harvesting (EH) is considered in order to provide the network with unlimited lifetime. To this end, the second part of the thesis focuses on the design and analysis of EH-aware MAC ...

Vazquez-Gallego, Francisco — Universitat Politècnica de Catalunya


Distributed Signal Processing Algorithms for Wireless Networks

Distributed signal processing algorithms have become a key approach for statistical inference in wireless networks and applications such as wireless sensor networks and smart grids. It is well known that distributed processing techniques deal with the extraction of information from data collected at nodes that are distributed over a geographic area. In this context, for each specific node, a set of neighbor nodes collect their local information and transmit the estimates to a specific node. Then, each specific node combines the collected information together with its local estimate to generate an improved estimate. In this thesis, novel distributed cooperative algorithms for inference in ad hoc, wireless sensor networks and smart grids are investigated. Low-complexity and effective algorithms to perform statistical inference in a distributed way are devised. A number of innovative approaches for dealing with node failures, compression of data ...

Xu, Songcen — University of York


Optimization of Positioning Capabilities in Wireless Sensor Networks: from power efficiency to medium access

In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime ofWSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the ...

Moragrega, Ana — Universitat Politecnica de Catalunya


Performance Analysis and Algorithm Design for Distributed Transmit Beamforming

Wireless sensor networks has been one of the major research topics in recent years because of its great potential for a wide range of applications. In some application scenarios, sensor nodes intend to report the sensing data to a far-field destination, which cannot be realized by traditional transmission techniques. Due to the energy limitations and the hardware constraints of sensor nodes, distributed transmit beamforming is considered as an attractive candidate for long-range communications in such scenarios as it can reduce energy requirement of each sen-sor node and extend the communication range. However, unlike conventional beamforming, which is performed by a centralized antenna array, distributed beamforming is performed by a virtual antenna array composed of randomly located sensor nodes, each of which has an independent oscillator. Sensor nodes have to coordinate with each other and adjust their transmitting signals to collaboratively ...

Song, Shuo — University of Edinburgh


Stochastic Schemes for Dynamic Network Resource Allocation

Wireless networks and power distribution grids are experiencing increasing demands on their efficiency and reliability. Judicious methods for allocating scarce resources such as power and bandwidth are of paramount importance. As a result, nonlinear optimization and signal processing tools have been incorporated into the design of contemporary networks. This thesis develops schemes for efficient resource allocation (RA) in such dynamic networks, with an emphasis in stochasticity, which is accounted for in the problem formulation as well as in the algorithms and schemes to solve those problems. Stochastic optimization and decomposition techniques are investigated to develop low-complexity algorithms with specific applications in cross-layer design of wireless communications, cognitive radio (CR) networks and smart power distribution systems. The costs and constraints on the availability of network resources, together with diverse quality of service (QoS) requirements, render network design, management, and operation challenging ...

Lopez Ramos, Luis Miguel — King Juan Carlos University


Distributed Signal Processing Algorithms for Multi-Task Wireless Acoustic Sensor Networks

Recent technological advances in analogue and digital electronics as well as in hardware miniaturization have taken wireless sensing devices to another level by introducing low-power communication protocols, improved digital signal processing capabilities and compact sensors. When these devices perform a certain pre-defined signal processing task such as the estimation or detection of phenomena of interest, a cooperative scheme through wireless connections can significantly enhance the overall performance, especially in adverse conditions. The resulting network consisting of such connected devices (or nodes) is referred to as a wireless sensor network (WSN). In acoustical applications (e.g., speech enhancement) a variant of WSNs, called wireless acoustic sensor networks (WASNs) can be employed in which the sensing unit at each node consists of a single microphone or a microphone array. The nodes of such a WASN can then cooperate to perform a multi-channel acoustic ...

Hassani, Amin — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.