Abstract / truncated to 115 words (read the full abstract)

Modern technologies have resulted in the production of numerous high-throughput biological datasets. However, the pace of development of capable computational methods does not cope with the pace of generation of new high-throughput datasets. Amongst the most popular biological high-throughput datasets are gene expression datasets (e.g. microarray datasets). This work targets this aspect by proposing a suite of computational methods which can analyse multiple gene expression datasets collectively. The focal method in this suite is the unification of clustering results from multiple datasets using external specifications (UNCLES). This method applies clustering to multiple heterogeneous datasets which measure the expression of the same set of genes separately and then combines the resulting partitions in accordance to one ... toggle 5 keywords

bioinformatics computational biology information engineering machine learning consensus clustering


Abu-Jamous, Basel
Brunel University London
Publication Year
Upload Date
Nov. 1, 2015

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.