Emotion assessment for affective computing based on brain and peripheral signals

Current Human-Machine Interfaces (HMI) lack of “emotional intelligence”, i.e. they are not able to identify human emotional states and take this information into account to decide on the proper actions to execute. The goal of affective computing is to fill this lack by detecting emotional cues occurring during Human-Computer Interaction (HCI) and synthesizing emotional responses. In the last decades, most of the studies on emotion assessment have focused on the analysis of facial expressions and speech to determine the emotional state of a person. Physiological activity also includes emotional information that can be used for emotion assessment but has received less attention despite of its advantages (for instance it can be less easily faked than facial expressions). This thesis reports on the use of two types of physiological activities to assess emotions in the context of affective computing: the activity ...

Chanel, Guillaume — University of Geneva


A COMPARISON OF DIFFERENT APPROACHES TO TARGET DIFFERENTIATION WITH SONAR

This study compares the performances of different classification schemes and fusion techniques for target differentiation and localization of commonly encountered features in indoor robot environments using sonar sensing. Differentiation of such features is of interest for intelligent systems in a variety of applications such as system control based on acoustic signal detection and identification, map-building, navigation, obstacle avoidance, and target tracking. The classification schemes employed include the target differentiation algorithm developed by Ayrulu and Barshan, statistical pattern recognition techniques, fuzzy c-means clustering algorithm, and artificial neural networks. The fusion techniques used are Dempster-Shafer evidential reasoning and different voting schemes. To solve the consistency problem arising in simple majority voting, different voting schemes including preference ordering and reliability measures are proposed and verified experimentally. To improve the performance of neural network classifiers, different input signal representations, two different training algorithms, and ...

Ayrulu-Erdem, Birsel — Bilkent University


Video Content Analysis by Active Learning

Advances in compression techniques, decreasing cost of storage, and high-speed transmission have facilitated the way videos are created, stored and distributed. As a consequence, videos are now being used in many applications areas. The increase in the amount of video data deployed and used in today's applications reveals not only the importance as multimedia data type, but also led to the requirement of efficient management of video data. This management paved the way for new research areas, such as indexing and retrieval of video with respect to their spatio-temporal, visual and semantic contents. This thesis presents work towards a unified framework for semi-automated video indexing and interactive retrieval. To create an efficient index, a set of representative key frames are selected which capture and encapsulate the entire video content. This is achieved by, firstly, segmenting the video into its constituent ...

Camara Chavez, Guillermo — Federal University of Minas Gerais


Least squares support vector machines classification applied to brain tumour recognition using magnetic resonance spectroscopy

Magnetic Resonance Spectroscopy (MRS) is a technique which has evolved rapidly over the past 15 years. It has been used specifically in the context of brain tumours and has shown very encouraging correlations between brain tumour type and spectral pattern. In vivo MRS enables the quantification of metabolite concentrations non-invasively, thereby avoiding serious risks to brain damage. While Magnetic Resonance Imaging (MRI) is commonly used for identifying the location and size of brain tumours, MRS complements it with the potential to provide detailed chemical information about metabolites present in the brain tissue and enable an early detection of abnormality. However, the introduction of MRS in clinical medicine has been difficult due to problems associated with the acquisition of in vivo MRS signals from living tissues at low magnetic fields acceptable for patients. The low signal-to-noise ratio makes accurate analysis of ...

Lukas, Lukas — Katholieke Universiteit Leuven


A comparative analysis of different approaches to target differentiation and localization using infrared sensors

This study compares the performances of various techniques for the differentiation and localization of commonly encountered features in indoor environments, such as planes, corners, edges, and cylinders, possibly with different surface properties, using simple infrared sensors. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting feature in a way that cannot be represented by a simple analytical relationship, therefore complicating the localization and differentiation process. The techniques considered include rule-based, template-based, and neural network-based target differentiation, parametric surface differentiation, and statistical pattern recognition techniques such as parametric density estimation, various linear and quadratic classifiers, mixture of normals, kernel estimator, k-nearest neighbor, artificial neural network, and support vector machine classifiers. The geometrical properties of the targets are more distinctive than their surface properties, and surface recognition is the limiting factor ...

Aytac, Tayfun — Bilkent University


Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors

This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...

Gil-Martín, Manuel — Universidad Politécnica de Madrid


Tracking and Planning for Surveillance Applications

Vision and infrared sensors are very common in surveillance and security applications, and there are numerous examples where a critical infrastructure, e.g. a harbor, an airport, or a military camp, is monitored by video surveillance systems. There is a need for automatic processing of sensor data and intelligent control of the sensor in order to obtain efficient and high performance solutions that can support a human operator. This thesis considers two subparts of the complex sensor fusion system; namely target tracking and sensor control.The multiple target tracking problem using particle filtering is studied. In particular, applications where road constrained targets are tracked with an airborne video or infrared camera are considered. By utilizing the information about the road network map it is possible to enhance the target tracking and prediction performance. A dynamic model suitable for on-road target tracking with ...

Skoglar, Per — Linköping University, Department of Electrical Engineering


Video person recognition strategies using head motion and facial appearance

In this doctoral dissertation, we principally explore the use of the temporal information available in video sequences for person and gender recognition; in particular, we focus on the analysis of head and facial motion, and their potential application as biometric identifiers. We also investigate how to exploit as much video information as possible for the automatic recognition; more precisely, we examine the possibility of integrating the head and mouth motion information with facial appearance into a multimodal biometric system, and we study the extraction of novel spatio-temporal facial features for recognition. We initially present a person recognition system that exploits the unconstrained head motion information, extracted by tracking a few facial landmarks in the image plane. In particular, we detail how each video sequence is firstly pre-processed by semiautomatically detecting the face, and then automatically tracking the facial landmarks over ...

Matta, Federico — Eurécom / Multimedia communications


Support Vector Machine Based Approach for Speaker Characterization

This doctoral thesis focuses on the development of algorithms of speaker characterisation by voice. Namely, characterisation of speaker’s identity, and the emotional state detectable in his voice while using the application of state-of-the art classifier algorithm Support Vector Machine (SVM) will be discussed. The first part deals with the state of the art SVM classifier utilised for classification experiments where we search for more sophisticated form of SVM model parameters selection. Also, we successfully apply optimization methods (PSO and GA algorithm) on two classification problems. The second part of this thesis deal with emotion recognition in continuous/dimensional space.

Hric, Martin — University of Žilina


Automated detection of epileptic seizures in pediatric patients based on accelerometry and surface electromyography

Epilepsy is one of the most common neurological diseases that manifests in repetitive epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. There is no cure for epilepsy and sometimes even medication and other therapies, like surgery, vagus nerve stimulation or ketogenic diet, do not control the number of seizures. In that case, long-term (home) monitoring and automatic seizure detection would enable the tracking of the evolution of the disease and improve objective insight in any responses to medical interventions or changes in medical treatment. Especially during the night, supervision is reduced; hence a large number of seizures is missed. In addition, an alarm should be integrated into the automated seizure detection algorithm for severe seizures in order to help the ...

Milošević, Milica — KU Leuven


Sensor Fusion for Automotive Applications

Mapping stationary objects and tracking moving targets are essential for many autonomous functions in vehicles. In order to compute the map and track estimates, sensor measurements from radar, laser and camera are used together with the standard proprioceptive sensors present in a car. By fusing information from different types of sensors, the accuracy and robustness of the estimates can be increased. Different types of maps are discussed and compared in the thesis. In particular, road maps make use of the fact that roads are highly structured, which allows relatively simple and powerful models to be employed. It is shown how the information of the lane markings, obtained by a front looking camera, can be fused with inertial measurement of the vehicle motion and radar measurements of vehicles ahead to compute a more accurate and robust road geometry estimate. Further, it ...

Lundquist, Christian — Linköping University


Perceptually-Based Signal Features for Environmental Sound Classification

This thesis faces the problem of automatically classifying environmental sounds, i.e., any non-speech or non-music sounds that can be found in the environment. Broadly speaking, two main processes are needed to perform such classification: the signal feature extraction so as to compose representative sound patterns and the machine learning technique that performs the classification of such patterns. The main focus of this research is put on the former, studying relevant signal features that optimally represent the sound characteristics since, according to several references, it is a key issue to attain a robust recognition. This type of audio signals holds many differences with speech or music signals, thus specific features should be determined and adapted to their own characteristics. In this sense, new signal features, inspired by the human auditory system and the human perception of sound, are proposed to improve ...

Valero, Xavier — La Salle-Universitat Ramon Llull


Vision Based Sign Language Recognition: Modeling and Recognizing Isolated Signs With Manual and Non-manual Components

This thesis addresses the problem of vision based sign language recognition and focuses on three main tasks to design improved techniques that increase the performance of sign language recognition systems. We first attack the markerless tracking problem during natural and unrestricted signing in less restricted environments. We propose a joint particle filter approach for tracking multiple identical objects, in our case the two hands and the face, which is robust to situations including fast movement, interactions and occlusions. Our experiments show that the proposed approach has a robust tracking performance during the challenging situations and is suitable for tracking long durations of signing with its ability of fast recovery. Second, we attack the problem of the recognition of signs that include both manual (hand gestures) and non-manual (head/body gestures) components. We investigated multi-modal fusion techniques to model the different temporal ...

Aran, Oya — Bogazici University


Analysis, Modelling, and Simulation of an Integrated Multisensor System for Maritime Border Control

In this dissertation a notional multi-sensor system acting in a maritime border control scenario for Homeland Security (HS) is analyzed, modelled, and simulated. The functions performed by the system are the detection, tracking, identification and classification of naval targets that enter a sea region, the evaluation of their threat level and the selection of a suitable reaction to them. The emulated system is composed of two platforms carrying multiple sensors: a land based platform, located on the coast, and an air platform, moving on an elliptic trajectory in front of the coast. The land based platform is equipped with a Vessel Traffic Service (VTS) radar, an infrared camera (IR) and a station belonging to an Automatic Identification System (AIS). The air platform carries an Airborne Early Warning Radar (AEWR) that can operate on a spotlight Synthetic Aperture Radar (SAR) mode, ...

Giompapa, Sofia — Universita di Pisa


Fusing prosodic and acoustic information for speaker recognition

Automatic speaker recognition is the use of a machine to identify an individual from a spoken sentence. Recently, this technology has been undergone an increasing use in applications such as access control, transaction authentication, law enforcement, forensics, and system customisation, among others. One of the central questions addressed by this field is what is it in the speech signal that conveys speaker identity. Traditionally, automatic speaker recognition systems have relied mostly on short-term features related to the spectrum of the voice. However, human speaker recognition relies on other sources of information; therefore, there is reason to believe that these sources can play also an important role in the automatic speaker recognition task, adding complementary knowledge to the traditional spectrum-based recognition systems and thus improving their accuracy. The main objective of this thesis is to add prosodic information to a traditional ...

Farrus, Mireia — Universitat Politecnica de Catalunya

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.