Confidence Measures for Speech/Speaker Recognition and Applications on Turkish LVCSR

Con dence measures for the results of speech/speaker recognition make the systems more useful in the real time applications. Con dence measures provide a test statistic for accepting or rejecting the recognition hypothesis of the speech/speaker recognition system. Speech/speaker recognition systems are usually based on statistical modeling techniques. In this thesis we de ned con dence measures for statistical modeling techniques used in speech/speaker recognition systems. For speech recognition we tested available con dence measures and the newly de ned acoustic prior information based con dence measure in two di erent conditions which cause errors: the out-of-vocabulary words and presence of additive noise. We showed that the newly de ned con dence measure performs better in both tests. Review of speech recognition and speaker recognition techniques and some related statistical methods is given through the thesis. We de ned also ...

Mengusoglu, Erhan — Universite de Mons


Deep Learning for i-Vector Speaker and Language Recognition

Over the last few years, i-vectors have been the state-of-the-art technique in speaker and language recognition. Recent advances in Deep Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and need speaker or/and phonetic labels for the background data, which are not easily accessible in practice. On the other hand, the lack of speaker-labeled background data makes a big performance gap, in speaker recognition, between two well-known cosine and Probabilistic Linear Discriminant Analysis (PLDA) i-vector scoring techniques. It has recently been a challenge how to fill this gap without speaker labels, which are expensive in practice. Although some unsupervised clustering techniques are proposed to estimate the speaker labels, they cannot accurately estimate the labels. This thesis tries to solve the problems above by using the DL technology in different ways, without ...

Ghahabi, Omid — Universitat Politecnica de Catalunya


Robust Speech Recognition: Analysis and Equalization of Lombard Effect in Czech Corpora

When exposed to noise, speakers will modify the way they speak in an effort to maintain intelligible communication. This process, which is referred to as Lombard effect (LE), involves a combination of both conscious and subconscious articulatory adjustment. Speech production variations due to LE can cause considerable degradation in automatic speech recognition (ASR) since they introduce a mismatch between parameters of the speech to be recognized and the ASR system’s acoustic models, which are usually trained on neutral speech. The main objective of this thesis is to analyze the impact of LE on speech production and to propose methods that increase ASR system performance in LE. All presented experiments were conducted on the Czech spoken language, yet, the proposed concepts are assumed applicable to other languages. The first part of the thesis focuses on the design and acquisition of a ...

Boril, Hynek — Czech Technical University in Prague


Statistical Parametric Speech Synthesis Based on the Degree of Articulation

Nowadays, speech synthesis is part of various daily life applications. The ultimate goal of such technologies consists in extending the possibilities of interaction with the machine, in order to get closer to human-like communications. However, current state-of-the-art systems often lack of realism: although high-quality speech synthesis can be produced by many researchers and companies around the world, synthetic voices are generally perceived as hyperarticulated. In any case, their degree of articulation is fixed once and for all. The present thesis falls within the more general quest for enriching expressivity in speech synthesis. The main idea consists in improving statistical parametric speech synthesis, whose most famous example is Hidden Markov Model (HMM) based speech synthesis, by introducing a control of the articulation degree, so as to enable synthesizers to automatically adapt their way of speaking to the contextual situation, like humans ...

Picart, Benjamin — Université de Mons (UMONS)


Statistical and Discriminative Language Modeling for Turkish Large Vocabulary Continuous Speech Recognition

Turkish, being an agglutinative language with rich morphology, presents challenges for Large Vocabulary Continuous Speech Recognition (LVCSR) systems. First, the agglutinative nature of Turkish leads to a high number of Out-of Vocabulary (OOV) words which in turn lower Automatic Speech Recognition (ASR) accuracy. Second, Turkish has a relatively free word order that leads to non-robust language model estimates. These challenges have been mostly handled by using meaningful segmentations of words, called sub-lexical units, in language modeling. However, a shortcoming of sub-lexical units is over-generation which needs to be dealt with for higher accuracies. This dissertation aims to address the challenges of Turkish in LVCSR. Grammatical and statistical sub-lexical units for language modeling are investigated and they yield substantial improvements over the word language models. Our novel approach inspired by dynamic vocabulary adaptation mostly recovers the errors caused by over-generation and ...

Arisoy, Ebru — Bogazici University


Automatic Speaker Characterization; Identification of Gender, Age, Language and Accent from Speech Signals

Speech signals carry important information about a speaker such as age, gender, language, accent and emotional/psychological state. Automatic recognition of speaker characteristics has a wide range of commercial, medical and forensic applications such as interactive voice response systems, service customization, natural human-machine interaction, recognizing the type of pathology of speakers, and directing the forensic investigation process. This research aims to develop accurate methods and tools to identify different physical characteristics of the speakers. Due to the lack of required databases, among all characteristics of speakers, our experiments cover gender recognition, age estimation, language recognition and accent/dialect identification. However, similar approaches and techniques can be applied to identify other characteristics such as emotional/psychological state. For speaker characterization, we first convert variable-duration speech signals into fixed-dimensional vectors suitable for classification/regression algorithms. This is performed by fitting a probability density function to acoustic ...

Bahari, Mohamad Hasan — KU Leuven


A multimicrophone approach to speech processing in a smart-room environment

Recent advances in computer technology and speech and language processing have made possible that some new ways of person-machine communication and computer assistance to human activities start to appear feasible. Concretely, the interest on the development of new challenging applications in indoor environments equipped with multiple multimodal sensors, also known as smart-rooms, has considerably grown. In general, it is well-known that the quality of speech signals captured by microphones that can be located several meters away from the speakers is severely distorted by acoustic noise and room reverberation. In the context of the development of hands-free speech applications in smart-room environments, the use of obtrusive sensors like close-talking microphones is usually not allowed, and consequently, speech technologies must operate on the basis of distant-talking recordings. In such conditions, speech technologies that usually perform reasonably well in free of noise and ...

Abad, Alberto — Universitat Politecnica de Catalunya


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki


Some Contributions to Music Signal Processing and to Mono-Microphone Blind Audio Source Separation

For humans, the sound is valuable mostly for its meaning. The voice is spoken language, music, artistic intent. Its physiological functioning is highly developed, as well as our understanding of the underlying process. It is a challenge to replicate this analysis using a computer: in many aspects, its capabilities do not match those of human beings when it comes to speech or instruments music recognition from the sound, to name a few. In this thesis, two problems are investigated: the source separation and the musical processing. The first part investigates the source separation using only one Microphone. The problem of sources separation arises when several audio sources are present at the same moment, mixed together and acquired by some sensors (one in our case). In this kind of situation it is natural for a human to separate and to recognize ...

Schutz, Antony — Eurecome/Mobile


Music Language Models for Automatic Music Transcription

Much like natural language, music is highly structured, with strong priors on the likelihood of note sequences. In automatic speech recognition (ASR), these priors are called language models, which are used in addition to acoustic models and participate greatly to the success of today's systems. However, in Automatic Music Transcription (AMT), ASR's musical equivalent, Music Language Models (MLMs) are rarely used. AMT can be defined as the process of extracting a symbolic representation from an audio signal, describing which notes were played at what time. In this thesis, we investigate the design of MLMs using recurrent neural networks (RNNs) and their use for AMT. We first look into MLM performance on a polyphonic prediction task. We observe that using musically-relevant timesteps results in desirable MLM behaviour, which is not reflected in usual evaluation metrics. We compare our model against benchmark ...

Ycart, Adrien — Queen Mary University of London


Robust speaker diarization for meetings

This thesis shows research performed into the topic of speaker diarization for meeting rooms. It looks into the algorithms and the implementation of an offline speaker segmentation and clustering system for a meeting recording where usually more than one microphone is available. The main research and system implementation has been done while visiting the International Computes Science Institute (ICSI, Berkeley, California) for a period of two years. Speaker diarization is a well studied topic on the domain of broadcast news recordings. Most of the proposed systems involve some sort of hierarchical clustering of the data into clusters, where the optimum number of speakers of their identities are unknown a priory. A very commonly used method is called bottom-up clustering, where multiple initial clusters are iteratively merged until the optimum number of clusters is reached, according to some stopping criterion. Such ...

Anguera, Xavier — Universitat Politecnica de Catalunya


Representation and Metric Learning Advances for Deep Neural Network Face and Speaker Biometric Systems

The increasing use of technological devices and biometric recognition systems in people daily lives has motivated a great deal of research interest in the development of effective and robust systems. However, there are still some challenges to be solved in these systems when Deep Neural Networks (DNNs) are employed. For this reason, this thesis proposes different approaches to address these issues. First of all, we have analyzed the effect of introducing the most widespread DNN architectures to develop systems for face and text-dependent speaker verification tasks. In this analysis, we observed that state-of-the-art DNNs established for many tasks, including face verification, did not perform efficiently for text-dependent speaker verification. Therefore, we have conducted a study to find the cause of this poor performance and we have noted that under certain circumstances this problem is due to the use of a ...

Mingote, Victoria — University of Zaragoza


Automatic Transcription of Polyphonic Music Exploiting Temporal Evolution

Automatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving ...

Benetos, Emmanouil — Centre for Digital Music, Queen Mary University of London


Distributed Localization and Tracking of Acoustic Sources

Localization, separation and tracking of acoustic sources are ancient challenges that lots of animals and human beings are doing intuitively and sometimes with an impressive accuracy. Artificial methods have been developed for various applications and conditions. The majority of those methods are centralized, meaning that all signals are processed together to produce the estimation results. The concept of distributed sensor networks is becoming more realistic as technology advances in the fields of nano-technology, micro electro-mechanic systems (MEMS) and communication. A distributed sensor network comprises scattered nodes which are autonomous, self-powered modules consisting of sensors, actuators and communication capabilities. A variety of layout and connectivity graphs are usually used. Distributed sensor networks have a broad range of applications, which can be categorized in ecology, military, environment monitoring, medical, security and surveillance. In this dissertation we develop algorithms for distributed sensor networks ...

Dorfan, Yuval — Bar Ilan University


Speech recognition in noisy conditions using missing feature approach

The research in this thesis addresses the problem of automatic speech recognition in noisy environments. Automatic speech recognition systems obtain acceptable performances in noise free conditions but these performances degrade dramatically in presence of additive noise. This is mainly due to the mismatch between the training and the noisy operating conditions. In the time-frequency representation of the noisy speech signal, some of the clean speech features are masked by noise. In this case the clean speech features cannot be correctly estimated from the noisy speech and therefore they are considered as missing or unreliable. In order to improve the performance of speech recognition systems in additive noise conditions, special attention should be paid to the problems of detection and compensation of these unreliable features. This thesis is concerned with the problem of missing features applied to automatic speaker-independent speech recognition. ...

Renevey, Philippe — Swiss Federal Institute of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.