Space-time multiuser receivers for wideband code division multiple access

Not Available

Hernandez, Marco Antonio — Delft University of Technology


Advanced Interference Suppression Techniques for Spread Spectrum Systems

Code division multiple access (CDMA) techniques have been widely employed by different wireless systems with many advantages. However, the performance of these systems is limited by interference. A number of different interference suppression techniques have been proposed, including multiuser detection, beamforming, adaptive supervised and blind algorithms, and transmit processing techniques requiring a limited feedback channel. Recently, CDMA techniques have also been combined with multicarrier and multiantenna schemes to further increase the system capacity and performance. This thesis investigates the existing algorithms and structures and proposes novel interference suppression algorithms for spread spectrum systems. Firstly we investigate blind constrained constant modulus (CCM) stochastic gradient (SG) receivers with a low-complexity variable step-size mechanism for downlink direct sequence CDMA (DS-CDMA) systems. This algorithm provides better performance than existing blind schemes in non-stationary scenarios. Convergence and tracking analyses of the proposed adaptation techniques are ...

Yunlong Cai — University of York


Study on Subband Adaptive Array for Space-Time Codes in Wideband Channel

Recently, many works have been accomplished on transmit diversity for a high-speed data transmission through the wireless channel. A Multiple Input Multiple Output (MIMO) system which employs multiple antennas at transmitter and receiver has been shown to be able to improve transmission data rate and capacity of the system. When the channel state information (CSI) is unknown at the transmitter, an multiple input single output (MISO) system combined with the transmit diversity of space time coding modulation known as space-time block coding (STBC) has taken a great attention. However, the performance of STBC is deteriorated under frequency selective fading due to inter symbol interference (ISI). An STBC employing tapped delay line adaptive array (STBC-TDLAA) is known as a solution for this problem since it utilizes the delayed signals to enhance the desired signal instead of excluding them as interferences. However, ...

Ramli, Nordin Bin — University of Electro-Communications, Japan


Blind Equalisation for Space-Time Coding over ISI Channels

Multi-input multi-output (MIMO) channels are known to increase the capacity of a transmission link. This can be exploited to increase either the multiplexing gain or the diversity gain, which leads to a higher data throughput or a better resilience of the link to fading, respectively. This thesis is concerned with the diversity gain, which, in a flat fading channel, can be maximised by Alamouti’s space-time block coding (STBC) scheme and a number of derivative techniques. For frequency selective fading, i.e. dispersive, MIMO channels, a few solutions have been reported in the literature including MIMO-OFDM, where the channel is decomposed into a number of narrowband problems, and a technique known as time-reversal STBC. For the latter, a number of blind adaptive algorithms have been derived, implemented and tested in order to avoid the requirement of explicit knowledge of the channel. The ...

Bendoukha, Samir — University of Strathclyde


On Adaptive MMSE Receiver Strategies for TD-CDMA

In this thesis a modified implementation of the adaptive minimum mean squared error (MMSE) receiver for a time division code division multiple access (TD-CDMA) system for third generation mobile communications is presented. This implementation can operate with spreading sequences which span over a few symbols and in environments where more than one spreading code is allocated to a single user. Two structures which combine the presented MMSE structure and the Rake receiver are also presented in an attempt to combine the advantages of both structures. After analysing the effect on a direct sequence spread spectrum system of multiple access interference and multipath fading induced inter-chip interference, the existing techniques for multiple access interference suppression capabilities are reviewed. Special attention is paid to the adaptive MMSE receiver, which takes into account the effect of multipath fading without requiring any additional channel ...

Garcia-Alis, Daniel — University of Strathclyde


Low Complexity Ultra-Wideband (UWB) Communication Systems in Presence of Multiple-Access Interference

Ultra-wideband (UWB) communication systems use radio signals with a bandwidth in the range of some hundred MHz to several GHz. Radio channels with dense multipath propagation achieve high multipath diversity, which can be used to improve the robustness and capacity of the communication channel. Furthermore the large bandwidth allows to transmit signals with a small power spectral density such that the interference to other radio signals will be negligible, even if they lie within the same frequency band. In this work the focus is on low-complexity receiver architectures for communication systems in presence of multiple-access interference (MAI). The main objective of this thesis is to develop and to study a framework for communications for transmitted reference (TR) UWB systems and energy detection UWB systems. First, we study the hybrid matched-filter (HMF) receiver for TR UWB systems, which employs matched filters ...

Jimmy Baringbing — Graz University of Technology


Fast Blind Adaptive Equalisation for Multiuser CDMA Systems

In order to improve communication over a dispersive channel in a CDMA system, we have to re-establish the orthogonally of codes which are used when combining input signals from many users onto a single communication path, as otherwise the performance of such system is limited significantly by inter-symbol interference (ISI) and multiuser access interference (MAI). In order to achieve this, adaptive filters are employed. A variety of adaptive schemes to remove ISI and MAI have been reported in the literature, some of which rely on training sequences, such as the Least Mean Squares (LMS) and Recursive Least Squares (RLS) algorithms, or on blind adaptation, such as the Constant Modulus Algorithm (CMA) or the Decision Directed algorithm (DD), which has similar convergence properties as the LMS in the absence of decision errors, the CMA is relatively slow compared to the DD ...

Daas, Adel — University of Strathclyde


Iterative Multi-User Receivers for CDMA Systems

Mobile communication networks of the third and future generations are designed to offer high-data rate services like video-telephony and data-transfer. The current Rake receiver architecture will create a shortage in available bandwidth offered to the users. This is not due to a shortage in spectrum but results from inefficient receiver architectures. Spectral efficiency can be increased considerably through multi-user detection techniques in the receiver algorithms. The present thesis investigates iterative re- ceivers for encoded CDMA transmission in the uplink. The iterative receiver is a suboptimal receiver algorithm with manageable complexity. It consists of an inter- ference mitigating multi-user detector, a bank of single-user decoders, and a channel estimator. Instead of deciding on the transmitted symbols right after the first decod- ing, the receiver feeds back tentative decision symbols to mitigate multiple-access interference in the next iteration. Similarly, soft decision symbols ...

Wehinger, J. — Vienna University of Technology


Statistical Physics Approach to Design and Analysis of Multiuser Systems Under Channel Uncertainty

Code-division multiple-access (CDMA) systems with random spreading and channel uncertainty at the receiver are studied. Frequency selective single antenna, as well as, narrowband multiple antenna channels are considered. Rayleigh fading is assumed in all cases. General Bayesian approach is used to derive both iterative and non-iterative estimators whose performance is obtained in the large system limit via the replica method from statistical physics. The effect of spatial correlation on the performance of a multiple antenna CDMA system operating in a flat-fading channel is studied. Per-antenna spreading (PAS) with random signature sequences and spatial multiplexing is used at the transmitter. Non-iterative multiuser detectors (MUDs) using imperfect channel state information (CSI) are derived. Training symbol based channel estimators having mismatched a priori knowledge about the antenna correlation are considered. Both the channel estimator and the MUD are shown to admit a simple ...

Vehkapera, Mikko — Norwegian University of Science and Technology


Ultra Wideband Communications: from Analog to Digital

The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by ...

Song, Nuan — Ilmenau University of Technology


Multiuser demodulation for DS-CDMA systems in fading channels

Multiuser demodulation algorithms for centralized receivers of asynchronous direct-sequence (DS) spread-spectrum code-division multiple-access (CDMA) systems in frequency-selective fading channels are studied. Both DS-CDMA systems with short (one symbol interval) and long (several symbol intervals) spreading sequences are considered. Linear multiuser receivers process ideally the complete received data block. The approximation of ideal infinite memory-length (IIR) linear multiuser detectors by finite memory-length (FIR) detectors is studied. It is shown that the FIR detectors can be made near-far resistant under a given ratio between maximum and minimum received power of users by selecting an appropriate memory-length. Numerical examples demonstrate the fact that moderate memory-lengths of the FIR detectors are sufficient to achieve the performance of the ideal IIR detectors even under severe near-far conditions. Multiuser demodulation in relatively fast fading channels is analyzed. The optimal maximum likelihood sequence detection receiver and suboptimal ...

Juntti, Markku — University of Oulou


Study and optimization of multi-antenna systems associated with multicarrier modulations

Since several years, multi-antenna systems are foreseen as a potential solution for increasing the throughput of future wireless communication systems. The aim of this thesis is to study and to improve the transmitter and receiver's techniques of these MIMO (Multiple Input Multiple Output) systems in the context of a multi-carrier transmission. On the one hand, the OFDM (Orthogonal Frequency Division Multiplex) modulation, which transform a frequency selective channel into multiple non frequency selective channels, is particularly well adapted to the conception of MIMO receivers with low complexity. On the other hand, two techniques allowing to improve the exploitation of frequential and/or temporal diversities are associated with OFDM, namely linear precoding (LP-OFDM) and CDMA in a MC-CDMA (Multicarrier Code division Multiplex Access) scheme. We have associated LP-OFDM and MC-CDMA with two MIMO techniques which require no channel state information at the ...

LE NIR, Vincent — INSA de Rennes


OFDM Multi-User Communication Over Time-Variant Channels

Wireless broadband communications for users moving at vehicular speed is a cor- nerstone of future fourth generation (4G) mobile communication systems. We inves- tigate a multi-carrier (MC) code division multiple access (CDMA) system which is based on orthogonal frequency division multiplexing (OFDM). A spreading sequence is used in the frequency domain in order to distinguish individual users and to take advantage of the multipath diversity of the wireless channel. The transmission is block oriented. A block consists of OFDM pilot and OFDM data symbols. At pedestrian velocities the channel can be modelled as block fading. We ap- ply iterative multi-user detection and channel estimation. In iterative receivers soft symbols are derived from the output of an soft-input soft-output decoder. These soft symbols are used in order to reduce the interference from other users and to enhance the channel estimates. We ...

Zemen, T. — Vienna University of Technology


Multipath delay estimators for fading channels with applications in CDMA receivers and mobile positioning

CDMA is the multiple access technique selected for the 3G mobile communications systems and it has a significant role in the research beyond 3G systems. CDMA systems over wireless channels have to cope with fading multipath propagation, which makes the channel estimation an important issue in CDMA receivers. Despite a significant amount of scientific literature on CDMA receivers, there are still open problems regarding the multipath delay and coefficient estimation in hostile environments and the design of low-complexity DSP-based channel estimators for CDMA applications. Good multipath delay estimation techniques can also find their applicability in mobile phone positioning, which is an area with many challenging questions. Additionally, theoretical measures of performance in CDMA detection in the presence of fading multipath channels have mainly been derived for ideal channel estimators. However, developing such analytical models in the presence of channel estimation ...

Lohan, Elena Simona — Tampere University of Technology


Achievable Rates and Transceiver Design in Ultra-Wideband Communications

In a multipath dominated environment, ultra-wideband (UWB) systems that transmit trains of subnanosecond duration pulses exhibit the desirable property of fine resolution in time of the received paths, which as a result of the impulsive form of the transmitted signal go through fewer amplitude fluctuations than those emanating from systems with narrower bandwidths. Being distributed over a large number of resolvable paths, UWB signal energy is typically collected by the rake receiver. In this thesis, achievable information rates of time-hopping M-ary pulse position modulation UWB systems using either soft- or hard-decision outputs are calculated first, where one distinguishing characteristic observed for the hard-output systems is that increasing the constellation size is advantageous only at sufficiently large values of the code rate. Next, it is shown that with time division duplex UWB systems, for which channel information is available at the ...

Guney, Nazli — Bogazici University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.