Adaptive target detection in radar imaging (2001)
Bayesian State-Space Modelling of Spatio-Temporal Non-Gaussian Radar Returns
Radar backscatter from an ocean surface is commonly referred to as sea clutter. Any radar backscatter not due to the scattering from an ocean surface constitutes a potential target. This thesis is concerned with the study of target detection techniques in the presence of high resolution sea clutter. In this dissertation, the high resolution sea clutter is treated as a compound process, where a fast oscillating speckle component is modulated in power by a slowly varying modulating component. While the short term temporal correlations of the clutter are associated with the speckle, the spatial correlations are largely associated with the modulating component. Due to the disparate statistical and correlation properties of the two components, a piecemeal approach is adopted throughout this thesis, whereby the spatial and the temporal correlations of high resolution sea clutter are treated independently. As an extension ...
Noga, Jacek Leszek — University of Cambridge
Advances in Detection and Classification for Through-the-Wall Radar Imaging
In this PhD thesis the problem of detection and classification of stationary targets in Through-the-Wall Radar Imaging is considered. A multiple-view framework is used in which a 3D scene of interest is imaged from a set of vantage points. By doing so, clutter and noise is strongly suppressed and target detectability increased. In target detection, centralized as well as decentralized frameworks for simultaneous image fusion and detection are examined. The practical case when no prior knowledge on image statistics is available and all inference must be drawn from the data at hand is specifically considered. An adaptive detection scheme is proposed which iteratively adapts in a non-stationary environment. Optimal configurations for this scheme are derived based on morphological operations which allow for automatic and reliable target detection. In a decentralized framework, local decisions are transmitted to a fusion center to ...
Debes, Christian — Technical University of Darmstad
Advanced GPR data processing algorithms for detection of anti-personnel landmines
Ground Penetrating Radar (GPR) is seen as one of several promising technologies aimed to help mine detection. GPR is sensitive to any inhomogeneity in the ground. Therefore any APM regardless of the metal content can be detected. On the other hand, all the inhomogeneities, which do not represent mines, show up as a clutter in GPR images. Moreover, it is known that reflectivity of APM is often weaker than that of stones, pieces of shrapnel and barbed wire, etc. Altogether these factors cause GPR to produce unacceptably high false alarm rate whilst it reaches the 99.6% detection rate which is prescribed by an UN resolution as a standard for humanitarian demining. The main goal of the work presented in the thesis is reduction of the false alarm rate while keeping the 99.6% detection rate intact. To reach this goal a ...
Kovalenko, Vsevolod — Delft University of Technology
This thesis addresses a number of problems all related to parameter estimation in sensor array processing. The unifying theme is that some of these parameters are known before the measurements are acquired. We thus study how to improve the estimation of the unknown parameters by incorporating the knowledge of the known parameters; exploiting this knowledge successfully has the potential to dramatically improve the accuracy of the estimates. For covariance matrix estimation, we exploit that the true covariance matrix is Kronecker and Toeplitz structured. We then devise a method to ascertain that the estimates possess this structure. Additionally, we can show that our proposed estimator has better performance than the state-of-art when the number of samples is low, and that it is also efficient in the sense that the estimates have Cramér-Rao lower Bound (CRB) equivalent variance. In the direction of ...
Wirfält, Petter — KTH Royal Institute of Technology
Nonlinear processing of non-Gaussian stochastic and chaotic deterministic time series
It is often assumed that interference or noise signals are Gaussian stochastic processes. Gaussian noise models are appealing as they usually result in noise suppression algorithms that are simple: i.e. linear and closed form. However, such linear techniques may be sub-optimal when the noise process is either a non-Gaussian stochastic process or a chaotic deterministic process. In the event of encountering such noise processes, improvements in noise suppression, relative to the performance of linear methods, may be achievable using nonlinear signal processing techniques. The application of interest for this thesis is maritime surveillance radar, where the main source of interference, termed sea clutter, is widely accepted to be a non-Gaussian stochastic process at high resolutions and/or at low grazing angles. However, evidence has been presented during the last decade which suggests that sea clutter may be better modelled as a ...
Cowper, Mark — University Of Edinburgh
Theoretical aspects and real issues in an integrated multiradar system
In the last few years Homeland Security (HS) has gained a considerable interest in the research community. From a scientific point of view, it is a difficult task to provide a definition of this research area and to exactly draw up its boundaries. In fact, when we talk about the security and the surveillance, several problems and aspects must be considered. In particular, the following factors play a crucial role and define the complexity level of the considered application field: the number of potential threats can be high and uncertain; the threat detection and identification can be made more complicated by the use of camouflaging techniques; the monitored area is typically wide and it requires a large and heterogeneous sensor network; the surveillance operation is strongly related to the operational scenario, so that it is not possible to define a ...
Fortunati Stefano — University of Pisa
Broadband adaptive beamforming with low complexity and frequency invariant response
This thesis proposes different methods to reduce the computational complexity as well as increasing the adaptation rate of adaptive broadband beamformers. This is performed exemplarily for the generalised sidelobe canceller (GSC) structure. The GSC is an alternative implementation of the linearly constrained minimum variance beamformer, which can utilise well-known adaptive filtering algorithms, such as the least mean square (LMS) or the recursive least squares (RLS) to perform unconstrained adaptive optimisation. A direct DFT implementation, by which broadband signals are decomposed into frequency bins and processed by independent narrowband beamforming algorithms, is thought to be computationally optimum. However, this setup fail to converge to the time domain minimum mean square error (MMSE) if signal components are not aligned to frequency bins, resulting in a large worst case error. To mitigate this problem of the so-called independent frequency bin (IFB) processor, overlap-save ...
Koh, Choo Leng — University of Southampton
Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing
Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable ...
Roemer, Florian — Ilmenau University of Technology
Visual ear detection and recognition in unconstrained environments
Automatic ear recognition systems have seen increased interest over recent years due to multiple desirable characteristics. Ear images used in such systems can typically be extracted from profile head shots or video footage. The acquisition procedure is contactless and non-intrusive, and it also does not depend on the cooperation of the subjects. In this regard, ear recognition technology shares similarities with other image-based biometric modalities. Another appealing property of ear biometrics is its distinctiveness. Recent studies even empirically validated existing conjectures that certain features of the ear are distinct for identical twins. This fact has significant implications for security-related applications and puts ear images on a par with epigenetic biometric modalities, such as the iris. Ear images can also supplement other biometric modalities in automatic recognition systems and provide identity cues when other information is unreliable or even unavailable. In ...
Emeršič, Žiga — University of Ljubljana, Faculty of Computer and Information Science
Automatic Classification of Digital Communication Signal Modulations
Automatic modulation classification detects the modulation type of received communication signals. It has important applications in military scenarios to facilitate jamming, intelligence, surveillance, and threat analysis. The renewed interest from civilian scenes has been fueled by the development of intelligent communications systems such as cognitive radio and software defined radio. More specifically, it is complementary to adaptive modulation and coding where a modulation can be deployed from a set of candidates according to the channel condition and system specification for improved spectrum efficiency and link reliability. In this research, we started by improving some existing methods for higher classification accuracy but lower complexity. Machine learning techniques such as k-nearest neighbour and support vector machine have been adopted for simplified decision making using known features. Logistic regression, genetic algorithm and genetic programming have been incorporated for improved classification performance through feature ...
Zhechen Zhu — Brunel University London
The interest for the intelligent vehicle field has been increased during the last years, must probably due to an important number of road accidents. Many accidents could be avoided if a device attached to the vehicle would assist the driver with some warnings when dangerous situations are about to appear. In recent years, leading car developers have recorded significant efforts and support research works regarding the intelligent vehicle field where they propose solutions for the existing problems, especially in the vision domain. Road detection and following, pedestrian or vehicle detection, recognition and tracking, night vision, among others are examples of applications which have been developed and improved recently. Still, a lot of challenges and unsolved problems remain in the intelligent vehicle domain. Our purpose in this thesis is to design an Obstacle Recognition system for improving the road security by ...
Apatean, Anca Ioana — Institut National des Sciences Appliquées de Rouen
Array Signal Processing Algorithms for Beamforming and Direction Finding
Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptive array processing algorithms have been reported in the literature in the last several decades. These algorithms, in a general view, exhibit a trade-off between performance and required computational complexity. In this thesis, we focus on the development of array processing algorithms in the application of beamforming and direction of arrival (DOA) estimation. In the beamformer design, we employ the constrained minimum variance (CMV) and the constrained constant modulus (CCM) criteria to propose full-rank and reduced-rank adaptive algorithms. Specifically, for the full-rank algorithms, we present two low-complexity adaptive step size mechanisms with the CCM criterion for the step size adaptation of the ...
Lei Wang — University of York
Advanced Signal Processing Techniques for Global Navigation Satellite Systems
This Dissertation addresses the synchronization problem using an array of antennas in the general framework of Global Navigation Satellite Systems (GNSS) receivers. Positioning systems are based on time delay and frequency-shift estimation of the incoming signals in the receiver side, in order to compute the user's location. Sources of accuracy degradation in satellite-based navigation systems are well-known, and their mitigation has deserved the attention of a number of researchers in latter times. While atmospheric-dependant sources (delays that depend on the ionosphere and troposphere conditions) can be greatly mitigated by differential systems external to the receiver's operation, the multipath effect is location-dependant and remains as the most important cause of accuracy degradation in time delay estimation, and consequently in position estimation, becoming a signal processing challenge. Traditional approaches to time delay estimation are often embodied in a communication systems framework. Indeed, ...
Fernandez-Prades, Carles — Universitat Politecnica de Catalunya
Linear Dynamical Systems with Sparsity Constraints: Theory and Algorithms
This thesis develops new mathematical theory and presents novel recovery algorithms for discrete linear dynamical systems (LDS) with sparsity constraints on either control inputs or initial state. The recovery problems in this framework manifest as the problem of reconstructing one or more sparse signals from a set of noisy underdetermined linear measurements. The goal of our work is to design algorithms for sparse signal recovery which can exploit the underlying structure in the measurement matrix and the unknown sparse vectors, and to analyze the impact of these structures on the efficacy of the recovery. We answer three fundamental and interconnected questions on sparse signal recovery problems that arise in the context of LDS. First, what are necessary and sufficient conditions for the existence of a sparse solution? Second, given that a sparse solution exists, what are good low-complexity algorithms that ...
Joseph, Geethu — Indian Institute of Science, Bangalore
Signal Strength Based Localization and Path-loss Exponent Self-Estimation in Wireless Networks
Wireless communications and networking are gradually permeating our life and substantially influencing every corner of this world. Wireless devices, particularly those of small size, will take part in this trend more widely, efficiently, seamlessly and smartly. Techniques requiring only limited resources, especially in terms of hardware, are becoming more important and urgently needed. That is why we focus this thesis around analyzing wireless communications and networking based on signal strength (SS) measurements, since these are easy and convenient to gather. SS-based techniques can be incorporated into any device that is equipped with a wireless chip. More specifically, this thesis studies \textbf{SS-based localization} and \textbf{path-loss exponent (PLE) self-estimation}. Although these two research lines might seem unrelated, they are actually marching towards the same goal. The former can easily enable a very simple wireless chip to infer its location. But to solve ...
Hu, Yongchang — Delft University of Technology
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.