Signal and Spectrum Coordination for Next Generation DSL Networks (2014)
Coordination Strategies for Interference Management in MIMO Dense Cellular Networks
The envisioned rapid and exponential increase of wireless data traffic demand in the next years imposes rethinking current wireless cellular networks due to the scarcity of the available spectrum. In this regard, three main drivers are considered to increase the capacity of today's most advanced (4G systems) and future (5G systems and beyond) cellular networks: i) use more bandwidth (more Hz) through spectral aggregation, ii) enhance the spectral efficiency per base station (BS) (more bits/s/Hz/BS) by using multiple antennas at BSs and users (i.e. MIMO systems), and iii) increase the density of BSs (more BSs/km2) through a dense and heterogeneous deployment (known as dense heterogeneous cellular networks). We focus on the last two drivers. First, the use of multi-antenna systems allows exploiting the spatial dimension for several purposes: improving the capacity of a conventional point-to-point wireless link, increasing the number ...
Lagen, Sandra — Universitat Politecnica de Catalunya
Resource Allocation in Modulation and Equalization Procedures in DSL Modems
Digital subscriber line (DSL) technology is a very popular broadband access technology. It uses the existing telephone infrastructure to provide broadband access. In order to cope with the increased bandwidth demand to support broadband services, such as, Video on Demand (VoD), real time multimedia streaming, it is important to further improve the DSL. The main performance degradation of the DSL system is caused by channel impairments, such as, crosstalk and inter-symbol interference (ISI). Furthermore, the discrete Fourier transform (DFT) based discrete multitone (DMT) system has very poor spectral properties, which prohibit the use of tones at the band edges in order to meet the power spectral density (PSD) constraints of the system, thus reducing the achievable bit rate. In order to mitigate the channel impairments as well as to combat the poor spectral properties of the DFT based DMT, sophisticated ...
Kumar Pandey, Prabin — KU Leuven
Multi-user Signal and Spectra Co-Ordination for digital subscriber lines
The appetite amongst consumers for ever higher data-rates seems insatiable. This booming market presents a huge opportunity for telephone and cable operators. It also presents a challenge: the delivery of broadband services to millions of customers across sparsely populated areas. Fully bre-based networks, whilst technically the most advanced solution, are prohibitively expensive to deploy. Digital subscriber lines (DSL) provide an alternative solution. Seen as a stepping-stone to a fully bre-based network, DSL operates over telephone lines that are already in place, minimizing the cost of deployment. The basic principle behind DSL technology is to increase data-rate by widening the transmission bandwidth. Unfortunately, operating at high frequencies, in a medium originally designed for voice-band transmission, leads to crosstalk between the di erent DSLs. Crosstalk is typically 10-15 dB larger than the background noise and is the dominant source of performance degradation ...
Cendrillon, Raphael — Katholieke Universiteit Leuven
To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, ...
Zhang, Jianshu — Ilmenau University of Technology
Cooperative Techniques for Interference Management in Wireless Networks
In the last few years, wireless devices have evolved to unimaginable heights. Current forecasts suggest that, in the near future, every device that may take advantage of a wireless connection will have one. In addition, there is a gradual migration to smart devices and high-speed connections, and, as a consequence, the overall mobile traffic is expected to experience a tremendous growth in the next years. The multiuser interference will hence become the main limiting factor and the most critical point to address. As instrumental to efficiently manage interference between different systems, this thesis provides a thorough study on cooperative techniques. That is, users share information and exploit it to improve the overall performance. Since multiuser cooperation represents a very broad term, we will focus on algorithm design and transceiver optimization for three cooperative scenarios that capture some of the main ...
Lameiro, Christian — University of Cantabria
Resource management and optimization in multi-user DSL systems
Digital subscriber line (DSL) technology is currently the most widely deployed broadband internet access technology and will continue to play an important role during the next decade. However, one of the major sources that limits the performance of current DSL systems is crosstalk, which is a channel distortion that is caused by the electromagnetic coupling among the different copper wires (DSL connections). Multi-user resource management is a very promising approach to prevent or even remove the impact of crosstalk, and that can significantly increase the performance of DSL systems. In this thesis, multiple efficient algorithms are proposed for multi-user resource management that only require a very low computational complexity and that can be applied to large-scale DSL systems. The application of these algorithms allows to significantly increase the data rates of DSL systems. It is furthermore shown that the proposed ...
Tsiaflakis, Paschalis — Katholieke Universiteit Leuven
Equalization and echo cancellation in DMT-based systems
Digital subscriber line (DSL) is a technology to provide broadband communications over the existing twisted pair telephone network. The signals received by a DSL modem are typically corrupted by channel induced noise, background noise, radio frequeny interference (RFI) and undesired echo. In this thesis we focus on the design of digital signal processing algorithms to improve the bit rate and/or the loop reach of current and future DSL systems. Furthermore, in the proposed algorithms we aim at keeping the hardware cost as low as possible. The transmission format of many DSL systems is based on discrete multitone modulation (DMT). To combat channel induced noise, DMT-based receivers perform an equalization step by means of a time domain equalizer (TEQ) and a one-tap frequency domain equalizer (FEQ) per used tone. Despite the variety of TEQ design methods presented in the literature, we ...
Ysebaert, Geert — Katholieke Universiteit Leuven
Advanced Multi-Dimensional Signal Processing for Wireless Systems
The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...
Cheng, Yao — Ilmenau University of Technology
Interference Alignment in MIMO Networks: Feasibility and Transceiver Design
Wireless communications have gone through an exponential growth in the last several years and it is forecast that this growth will be sustained for the coming decades. This ever-increasing demand for radio resources is now facing one of its main limitations: inter-user interference, arising from the fact of multiple users accessing the propagation medium simultaneously which limits the total amount of data that can be reliably communicated through the wireless links. Traditionally, interference has been dealt with by allocating disjoint channel resources to distinct users. However, the advent of a novel interference coordination technique known as interference alignment (IA) brought to the forefront the promise of a much larger spectral efficiency. This dissertation revolves around the idea of linear interference alignment for a network consisting of several mutually interfering transmitter-receiver pairs, which is com-monly known as interference channel. In particular, ...
Fernandez, Oscar Gonzalez — University of Cantabria
Massive MIMO Technologies for 5G and Beyond-5G Wireless Networks
Massive multiple input multiple output (MIMO) is a promising 5G and beyond-5G wireless access technology that can provide huge throughput, compared with the current technology, in order to satisfy some requirements for the future generations of wireless networks. The research described in this thesis proposes the design of some applications of the massive MIMO technology that can be implemented in order to increase the spectral efficiency per cell of the future wireless networks through a simple and low complexity signal processing. In particular, massive MIMO is studied in conjunction with two other topics that are currently under investigation for the future wireless systems, both in academia and in industry: the millimeter wave frequencies and the distributed antenna systems. The first part of the thesis gives a brief overview on the requirements of the future wireless networks and it explains some ...
D'Andrea, Carmen — Università di Cassino e del Lazio Meridionale
New Approach to Dynamic Spectrum Management for DSL Environments
Currently, the telecommunications market has brought changes to the design of the old model of the telecommunications network. The emergence of new technologies for higher speed access was inevitable in order to meet the requirements of the appearance of the multimedia services (VoD, online gaming etc.). The latest technologies for broadband access over telephone pairs are Digital Subscriber Lines or DSL. This set of xDSL technologies allow the transfer of binary high speed over telephone twisted pair by using a suitable type of line codes. They allow a flow of high-speed information both asymmetrical and symmetrical over the telephone loop. This thesis presents the state of the art of Dynamic Spectrum Management (DSM) technologies suggested to improve the performance of DSL systems and proposes a new approach to this issue. The main contributions of this thesis includes extended bandwidth channel ...
Jakovljevic, Milos — Technical University of Madrid (UPM)
Limited Feedback Transceiver Design for Downlink MIMO OFDM Cellular Networks
Feedback in wireless communications is tied to a long-standing and successful history, facilitating robust and spectrally efficient transmission over the uncertain wireless medium. Since the application of multiple antennas at both ends of the communication link, enabling multiple-input multiple-output (MIMO) transmission, the importance of feedback information to achieve the highest performance is even more pronounced. Especially when multiple antennas are employed by the transmitter to handle the interference between multiple users, channel state information (CSI) is a fundamental prerequisite. The corresponding multi-user MIMO, interference alignment and coordination techniques are considered as a central part of future cellular networks to cope with the growing inter-cell-interference, caused by the unavoidable densification of base stations to support the exponentially increasing demand on network capacities. However, this vision can only be implemented with efficient feedback algorithms that provide accurate CSI at the transmitter without ...
Schwarz, Stefan — Vienna University of Technology
Full-Duplex Device-to-Device Communication for 5G Network
With the rapidly growing of the customers’ data traffic demand, improving the system capacity and increasing the user throughput have become essential concerns for the future fifth-generation (5G) wireless communication network. In this context, device-to-device (D2D) communication and in-band full-duplex (FD) are proposed as potential solutions to increase the spatial spectrum utilization and the user rate in a cellular network. D2D allows two nearby devices to communicate without base station (BS) participation or with limited participation. On the other hand, FD communication enables simultaneous transmission and reception in the same frequency band. Due to the short distance property of D2D links, exploiting the FD technology in D2D communication is an excellent choice to further improve the cellular spectrum efficiency and the users’ throughput. However, practical FD transceivers add new challenges for D2D communication. For instance, the existing FD devices cannot ...
Hussein CHOUR — CentraleSupélec (CS) and Université Libanaise (UL)
This work considers a Broadcast Channel (BC) system, where the transmitter is equipped with multiple antennas and each user at the receiver side could have one or more antennas. Depending on the number of antennas at the receiver side, such a system is known as Multiple-User Multiple-Input Single-Output (MU-MISO), for single antenna users, or Multiple-UserMultiple-InputMultiple-Output (MU-MIMO), for several antenna users. This model is suitable for current wireless communication systems. Regarding the direction of the data flow, we differentiate between downlink channel or BC, and uplink channel or Multiple Access Channel (MAC). In the BC the signals are sent from the Base Station (BS) to the users, whereas the information from the users is sent to the BS in the MAC. In this work we focus on the BC where the BS applies linear precoding taking advantage of multiple antennas. The ...
González-Coma, José Pablo — University of a Coruña
Interweave/Underlay Cognitive Radio Techniques and Applications in Satellite Communication Systems
The demand for precious radio spectrum is continuously increasing while the available radio frequency resource has become scarce due to spectrum segmentation and the dedicated frequency allocation of standardized wireless systems. This scarcity has led to the concept of cognitive radio communication which comprises a variety of techniques capable of allowing the coexistence of licensed and unlicensed systems over the same spectrum. In this context, this thesis focuses on interweave and underlay cognitive radio paradigms which are widely considered as important enablers for realising cognitive radio technology. In the interweave paradigm, an unlicensed user explores the spectral holes by means of some spectrum awareness methods and utilizes the available spectral availabilities opportunistically while in the underlay paradigm, an unlicensed user is allowed to coexist with the licensed user only if sufficient protection to the licensed user can be guaranteed. Starting ...
Sharma, Shree Krishna — SnT, University of Luxembourg
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.