Mining the ECG: Algorithms and Applications

This research focuses on the development of algorithms to extract diagnostic information from the ECG signal, which can be used to improve automatic detection systems and home monitoring solutions. In the first part of this work, a generically applicable algorithm for model selection in kernel principal component analysis is presented, which was inspired by the derivation of respiratory information from the ECG signal. This method not only solves a problem in biomedical signal processing, but more importantly offers a solution to a long-standing problem in the field of machine learning. Next, a methodology to quantify the level of contamination in a segment of ECG is proposed. This level is used to detect artifacts, and to improve the performance of different classifiers, by removing these artifacts from the training set. Furthermore, an evaluation of three different methodologies to compute the ECG-derived ...

Varon, Carolina — KU Leuven


Modulation Spectrum Analysis for Noisy Electrocardiogram Signal Processing and Applications

Advances in wearable electrocardiogram (ECG) monitoring devices have allowed for new cardiovascular applications to emerge beyond diagnostics, such as stress and fatigue detection, athletic performance assessment, sleep disorder characterization, mood recognition, activity surveillance, biometrics, and fitness tracking, to name a few. Such devices, however, are prone to artifacts, particularly due to movement, thus hampering heart rate and heart rate variability measurement and posing a serious threat to cardiac monitoring applications. To address these issues, this thesis proposes the use of a spectro-temporal signal representation called “modulation spectrum”, which is shown to accurately separate cardiac and noise components from the ECG signals, thus opening doors for noise-robust ECG signal processing tools and applications. First, an innovative ECG quality index based on the modulation spectral signal representation is proposed. The representation quantifies the rate-of-change of ECG spectral components, which are shown to ...

Tobon Vallejo, Diana Patricia — INRS-EMT


Extraction and Denoising of Fetal ECG Signals

Congenital heart defects are the leading cause of birth defect-related deaths. The fetal electrocardiogram (fECG), which is believed to contain much more information as compared with conventional sonographic methods, can be measured by placing electrodes on the mother’s abdomen. However, it has very low power and is mixed with several sources of noise and interference, including the strong maternal ECG (mECG). In previous studies, several methods have been proposed for the extraction of fECG signals recorded from the maternal body surface. However, these methods require a large number of sensors, and are ineffective with only one or two sensors. In this study, state modeling, statistical and deterministic approaches are proposed for capturing weak traces of fetal cardiac signals. These three methods implement different models of the quasi-periodicity of the cardiac signal. In the first approach, the heart rate and its ...

Niknazar, Mohammad — University of Grenoble


Unsupervised and semi-supervised Non-negative Matrix Factorization methods for brain tumor segmentation using multi-parametric MRI data

Gliomas represent about 80% of all malignant primary brain tumors. Despite recent advancements in glioma research, patient outcome remains poor. The 5 year survival rate of the most common and most malignant subtype, i.e. glioblastoma, is about 5%. Magnetic resonance imaging (MRI) has become the imaging modality of choice in the management of brain tumor patients. Conventional MRI (cMRI) provides excellent soft tissue contrast without exposing the patient to potentially harmful ionizing radiation. Over the past decade, advanced MRI modalities, such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have gained interest in the clinical field, and their added value regarding brain tumor diagnosis, treatment planning and follow-up has been recognized. Tumor segmentation involves the imaging-based delineation of a tumor and its subcompartments. In gliomas, segmentation plays an important role in treatment planning as well ...

Sauwen, Nicolas — KU Leuven


Advanced models for monitoring stress and development trajectories in premature infants

This thesis focuses on the design of various automatic signal processing algorithms to extract information from physiological signals of preterm infants. Overall, the aim was to improve the neurodevelopmental outcome of the neonate. More specifically, three main research objectives were carried out. The first objective was to describe the maturation of neonates during their stay in the neonatal intensive care unit. The second objective was to assess the stress and pain in premature infants and their impact on the development of neonates. The third objective was to predict developmental disabilities, such as autism. The first part of this thesis presents an extensive overview of various developmental models to describe the maturation of premature infants. Three main strategies were proposed. The first strategy proposed an investigation of EEG connectivity networks. A variety of functional and effective connectivity methods were combined with ...

Lavanga, Mario — KU Leuven


Biomechanics based analysis of sleep

The fact that a third of a human life is spent in a bed indicates the essential character of sleep. While some people might opt voluntarily for sleep deprivation, others don’t get to choose. Their healthy pattern of sleep is disrupted due to sleep disorders such as sleep apnea, insomnia and restless legs syndrome. Most clinical diagnoses revolve around complaints of excessive daytime sleepiness. People usually wait quite long however before contacting professional help, and might only do so when complaints have gone from minor to serious. It can be argued that people with minor complaints will have negligible compliance to rather obtrusive therapies, and should not be treated with pharmaceuticals. However, cognitive and behavioral therapy has proven its effectiveness for clinically diagnosed patients in different domains, and might thus also enhance the quality of life for people with minor ...

Willemen, Tim — KU Leuven


Exploiting Sparsity for Efficient Compression and Analysis of ECG and Fetal-ECG Signals

Over the last decade there has been an increasing interest in solutions for the continuous monitoring of health status with wireless, and in particular, wearable devices that provide remote analysis of physiological data. The use of wireless technologies have introduced new problems such as the transmission of a huge amount of data within the constraint of limited battery life devices. The design of an accurate and energy efficient telemonitoring system can be achieved by reducing the amount of data that should be transmitted, which is still a challenging task on devices with both computational and energy constraints. Furthermore, it is not sufficient merely to collect and transmit data, and algorithms that provide real-time analysis are needed. In this thesis, we address the problems of compression and analysis of physiological data using the emerging frameworks of Compressive Sensing (CS) and sparse ...

Da Poian, Giulia — University of Udine


Multimodal signal analysis for unobtrusive characterization of obstructive sleep apnea

Obstructive sleep apnea (OSA) is the most prevalent sleep related breathing disorder, nevertheless subjects suffering from it often remain undiagnosed due to the cumbersome diagnosis procedure. Moreover, the prevalence of OSA is increasing and a better phenotyping of patients is needed in order to prioritize treatment. The goal of this thesis was to tackle those challenges in OSA diagnosis. Additionally, two main algorithmic contributions which are generally applicable were proposed within this thesis. The binary interval coded scoring algorithm was extended to multilevel problems and novel monotonicity constraints were introduced. Moreover, improvements to the random-forest based feature selection were proposed including the use of the Cohen’s kappa value, patient independent validation, and further feature pruning steered by the correlation between features. These novel methods were applied together with classification and feature selection methods from the literature to improve the OSA ...

Deviaene, Margot — KU Leuven


Multimodal epileptic seizure detection : towards a wearable solution

Epilepsy is one of the most common neurological disorders, which affects almost 1% of the population worldwide. Anti-epileptic drugs provide adequate treatment for about 70% of epilepsy patients. The remaining 30% of the patients continue to have seizures, which drastically affects their quality of life. In order to obtain efficacy measures of therapeutic interventions for these patients, an objective way to count and document seizures is needed. However, in an outpatient setting, one of the major problems is that seizure diaries kept by patients are unreliable. Automated seizure detection systems could help to objectively quantify seizures. Those detection systems are typically based on full scalp Electroencephalography (EEG). In an outpatient setting, full scalp EEG is of limited use because patients will not tolerate wearing a full EEG cap for long time periods during daily life. There is a need for ...

Vandecasteele, Kaat — KU Leuven


Central and peripheral mechanisms: a multimodal approach to understanding and restoring human motor control

All human actions involve motor control. Even the simplest movement requires the coordinated recruitment of many muscles, orchestrated by neuronal circuits in the brain and the spinal cord. As a consequence, lesions affecting the central nervous system, such as stroke, can lead to a wide range of motor impairments. While a certain degree of recovery can often be achieved by harnessing the plasticity of the motor hierarchy, patients typically struggle to regain full motor control. In this context, technology-assisted interventions offer the prospect of intense, controllable and quantifiable motor training. Yet, clinical outcomes remain comparable to conventional approaches, suggesting the need for a paradigm shift towards customized knowledge-driven treatments to fully exploit their potential. In this thesis, we argue that a detailed understanding of healthy and impaired motor pathways can foster the development of therapies optimally engaging plasticity. To this ...

Kinany, Nawal — Ecole Polytechnique Fédérale de Lausanne (EPFL)


Feature Extraction and Data Reduction for Hyperspectral Remote Sensing Earth Observation

Earth observation and land-cover analysis became a reality in the last 2-3 decades thanks to NASA airborne and spacecrafts such as Landsat. Inclusion of Hyperspectral Imaging (HSI) technology in some of these platforms has made possible acquiring large data sets, with high potential in analytical tasks but at the cost of advanced signal processing. In this thesis, effective/efficient feature extraction methods are proposed. Initially, contributions are introduced for efficient computation of the covariance matrix widely used in data reduction methods such as Principal Component Analysis (PCA). By taking advantage of the cube structure in HSI, onsite and real-time covariance computation is achieved, reducing memory requirements as well. Furthermore, following the PCA algorithm, a novel method called Folded-PCA (Fd-PCA) is proposed for efficiency while extracting both global and local features within the spectral pixels, achieved by folding the spectral samples from ...

Zabalza, Jaime — University of Strathclyde


Dialogue Enhancement and Personalization - Contributions to Quality Assessment and Control

The production and delivery of audio for television involve many creative and technical challenges. One of them is concerned with the level balance between the foreground speech (also referred to as dialogue) and the background elements, e.g., music, sound effects, and ambient sounds. Background elements are fundamental for the narrative and for creating an engaging atmosphere, but they can mask the dialogue, which the audience wishes to follow in a comfortable way. Very different individual factors of the people in the audience clash with the creative freedom of the content creators. As a result, service providers receive regular complaints about difficulties in understanding the dialogue because of too loud background sounds. While this has been a known issue for at least three decades, works analyzing the problem and up-to-date statics were scarce before the contributions in this work. Enabling the ...

Torcoli, Matteo — Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)


Time-frequency analysis of optical and electrical cardiac signals with applications in ultra-high-field MRI

Electrocardiography (ECG) is the standard method for assessing the state of the cardiovascular system non-invasively. In the context of magnetic resonance imaging (MRI) the ECG signal is used for cardiac monitoring and triggering, i.e., the acquisition of images synchronized to the cardiac cycle. However, ECG acquisition is impeded by the static and dynamic magnetic fields which alter the measured voltages and may reduce signal-to-noise ratio (SNR), leading to false alarms during cardiac monitoring or to image artifacts during cardiac triggering. A major source of noise is the magnetohydrodynamic (MHD) effect as it is proportional to field strength and represents a key challenge in application of ultra-high-field (UHF) MRI >=7 T. In this work, two approaches for overcoming these limitations are proposed: i) Development of a hardware and software system based on the principal of photoplethysmography imaging (PPGi) as an optical ...

Spicher, Nicolai — University of Duisburg-Essen


Characterization of the neurometabolic coupling in the premature brain using NIRS and EEG

Every year, an estimated 15 million babies are born preterm, that is, before 37 weeks of gestation. This number is rising in all countries and currently represents more than 1 in 10 babies, affecting families all over the world. During the last decades, the survival rate of prematurely born neonates has steadily increased, mainly as a result of medical and technical progress in neonatal intensive care. The very preterm infants, which represent up to 10% of the preterm infants in the EU, remain at risk for adverse outcome and neurodevelopmental disability. These maladaptive outcomes have a severe effect on the children’s quality of life and a huge economic impact on society. In order to reduce this burden and improve neonatal care in general, appropriate tools need to be developed to identify the neonates with a higher risk of adverse outcomes. ...

Hendrikx, Dries — KU Leuven


Cardiorespiratory dynamics: algorithms and application to mental stress monitoring

The rate at which our heart beats, is a dynamical process enabling adaptive changes according to the demands of our body. These variations in heart rate are widely studied in so-called heart rate variability (HRV) analyses, as they contain much information about the activity of our autonomic nervous system. Variability in the heart rate arises from several processes, such as thermoregulation, hormones, arterial blood pressure, respiration, etc. One of the main short-term modulators of the heart rate is respiration. This phenomenon is called respiratory sinus arrhythmia (RSA) and comprises the rhythmic fluctuation of the heart rate at respiratory frequency. It has also widely been used as an index of vagal outflow. However, this has been widely debated as some studies have shown that the magnitude of RSA changes with respiratory rate and the depth of breathing, independently of parasympathetic activity. ...

Widjaja, Devy — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.