Probabilistic modeling for sensor fusion with inertial measurements

In recent years, inertial sensors have undergone major developments. The quality of their measurements has improved while their cost has decreased, leading to an increase in availability. They can be found in stand-alone sensor units, so-called inertial measurement units, but are nowadays also present in for instance any modern smartphone, in Wii controllers and in virtual reality headsets. The term inertial sensor refers to the combination of accelerometers and gyroscopes. These measure the external specific force and the angular velocity, respectively. Integration of their measurements provides information about the sensor’s position and orientation. However, the position and orientation estimates obtained by simple integration suffer from drift and are therefore only accurate on a short time scale. In order to improve these estimates, we combine the inertial sensors with additional sensors and models. To combine these different sources of information, also ...

Kok, Manon — Linköping University


Selected Topics in Inertial and Visual Sensor Fusion: Calibration, Observability Analysis and Applications

Recent improvements in the development of inertial and visual sensors allow building small, lightweight, and cheap motion capture systems, which are becoming a standard feature of smartphones and personal digital assistants. This dissertation describes developments of new motion sensing strategies using the inertial and inertial-visual sensors. The thesis contributions are presented in two parts. The first part focuses mainly on the use of inertial measurement units. First, the problem of sensor calibration is addressed and a low-cost and accurate method to calibrate the accelerometer cluster of this unit is proposed. The method is based on the maximum likelihood estimation framework, which results in a minimum variance unbiased estimator.Then using the inertial measurement unit, a probabilistic user-independent method is proposed for pedestrian activity classification and gait analysis.The work targets two groups of applications including human activity classificationand joint human activity and ...

Panahandeh Ghazaleh — KTH Royal Institute of Technology


ULTRA WIDEBAND LOCATION IN SCENARIOS WITHOUT CLEAR LINE OF SIGHT: A PRACTICAL APPROACH

Indoor location has experienced a major boost in recent years. location based services (LBS), which until recently were restricted to outdoor scenarios and the use of GPS, have also been extended into buildings. From large public structures such as airports or hospitals to a multitude of industrial scenarios, LBS has become increasingly present in indoor scenarios. Of the various technologies that can be used to achieve this indoor location, the ones based on ultra- wideband (UWB) signals have become ones of the most demanded due primarily to their accuracy in position estimation. Additionally, the appearance in the market of more and more manufacturers and products has lowered the prices of these devices to levels that allow to think about their use for large deployments with a contained budget. By their nature, UWB signals are very resistant to the multi-path phenomenon, ...

Barral, Valentín — Universidade da Coruña


Acoustic sensor network geometry calibration and applications

In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...

Plinge, Axel — TU Dortmund University


Multi-Sensor Integration for Indoor 3D Reconstruction

Outdoor maps and navigation information delivered by modern services and technologies like Google Maps and Garmin navigators have revolutionized the lifestyle of many people. Motivated by the desire for similar navigation systems for indoor usage from consumers, advertisers, emergency rescuers/responders, etc., many indoor environments such as shopping malls, museums, casinos, airports, transit stations, offices, and schools need to be mapped. Typically, the environment is first reconstructed by capturing many point clouds from various stations and defining their spatial relationships. Currently, there is a lack of an accurate, rigorous, and speedy method for relating point clouds in indoor, urban, satellite-denied environments. This thesis presents a novel and automatic way for fusing calibrated point clouds obtained using a terrestrial laser scanner and the Microsoft Kinect by integrating them with a low-cost inertial measurement unit. The developed system, titled the Scannect, is the ...

Chow, Jacky — University of Calgary


Estimation for Sensor Fusion and Sparse Signal Processing

Progressive developments in computing and sensor technologies during the past decades have enabled the formulation of increasingly advanced problems in statistical inference and signal processing. The thesis is concerned with statistical estimation methods, and is divided into three parts with focus on two different areas: sensor fusion and sparse signal processing. The first part introduces the well-established Bayesian, Fisherian and least-squares estimation frameworks, and derives new estimators. Specifically, the Bayesian framework is applied in two different classes of estimation problems: scenarios in which (i) the signal covariances themselves are subject to uncertainties, and (ii) distance bounds are used as side information. Applications include localization, tracking and channel estimation. The second part is concerned with the extraction of useful information from multiple sensors by exploiting their joint properties. Two sensor configurations are considered here: (i) a monocular camera and an inertial ...

Zachariah, Dave — KTH Royal Institute of Technology


Estimation of Nonlinear Dynamic Systems: Theory and Applications

This thesis deals with estimation of states and parameters in nonlinear and non-Gaussian dynamic systems. Sequential Monte Carlo methods are mainly used to this end. These methods rely on models of the underlying system, motivating some developments of the model concept. One of the main reasons for the interest in nonlinear estimation is that problems of this kind arise naturally in many important applications. Several applications of nonlinear estimation are studied. The models most commonly used for estimation are based on stochastic difference equations, referred to as state-space models. This thesis is mainly concerned with models of this kind. However, there will be a brief digression from this, in the treatment of the mathematically more intricate differential-algebraic equations. Here, the purpose is to write these equations in a form suitable for statistical signal processing. The nonlinear state estimation problem is ...

Schon, Thomas — Linkopings Universitet


Contributions to the Information Fusion : application to Obstacle Recognition in Visible and Infrared Images

The interest for the intelligent vehicle field has been increased during the last years, must probably due to an important number of road accidents. Many accidents could be avoided if a device attached to the vehicle would assist the driver with some warnings when dangerous situations are about to appear. In recent years, leading car developers have recorded significant efforts and support research works regarding the intelligent vehicle field where they propose solutions for the existing problems, especially in the vision domain. Road detection and following, pedestrian or vehicle detection, recognition and tracking, night vision, among others are examples of applications which have been developed and improved recently. Still, a lot of challenges and unsolved problems remain in the intelligent vehicle domain. Our purpose in this thesis is to design an Obstacle Recognition system for improving the road security by ...

Apatean, Anca Ioana — Institut National des Sciences Appliquées de Rouen


Modeling of Magnetic Fields and Extended Objects for Localization Applications

The level of automation in our society is ever increasing. Technologies like self-driving cars, virtual reality, and fully autonomous robots, which all were unimaginable a few decades ago, are realizable today, and will become standard consumer products in the future. These technologies depend upon autonomous localization and situation awareness where careful processing of sensory data is required. To increase efficiency, robustness and reliability, appropriate models for these data are needed. In this thesis, such models are analyzed within three different application areas, namely (1) magnetic localization, (2) extended target tracking, and (3) autonomous learning from raw pixel information. Magnetic localization is based on one or more magnetometers measuring the induced magnetic field from magnetic objects. In this thesis we present a model for determining the position and the orientation of small magnets with an accuracy of a few millimeters. This ...

Wahlström, Niklas — Linköping University


Bayesian Algorithms for Mobile Terminal Positioning in Outdoor Wireless Environments

The ability to reliably and cheaply localize mobile terminals will allow users to understand and utilize the what, where and when of the surrounding physical world. Therefore, mobile terminal location information will open novel application opportunities in many areas. The mobile terminal positioning problem is categorized into three different types according to the availability of (1) initial accurate location information and (2) motion measurement data. Location estimation refers to the mobile positioning problem when both the initial location and motion measurement data are not available. If both are available, the positioning problem is referred to as position tracking. When only motion measurements are available the problem is known as global localization. These positioning problems were solved within the Bayesian filtering framework in order to work under a common theoretical context. Filter derivation and implementation algorithms are provided with emphasis on ...

Khalaf-Allah, Mohamed — Leibniz University of Hannover


Advanced Signal Processing Techniques for Global Navigation Satellite Systems

This Dissertation addresses the synchronization problem using an array of antennas in the general framework of Global Navigation Satellite Systems (GNSS) receivers. Positioning systems are based on time delay and frequency-shift estimation of the incoming signals in the receiver side, in order to compute the user's location. Sources of accuracy degradation in satellite-based navigation systems are well-known, and their mitigation has deserved the attention of a number of researchers in latter times. While atmospheric-dependant sources (delays that depend on the ionosphere and troposphere conditions) can be greatly mitigated by differential systems external to the receiver's operation, the multipath effect is location-dependant and remains as the most important cause of accuracy degradation in time delay estimation, and consequently in position estimation, becoming a signal processing challenge. Traditional approaches to time delay estimation are often embodied in a communication systems framework. Indeed, ...

Fernandez-Prades, Carles — Universitat Politecnica de Catalunya


Digital Processing Based Solutions for Life Science Engineering Recognition Problems

The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...

Hussein, Walid — Technische Universität München


Contactless and less-constrained palmprint recognition

Biometric systems consist in the combination of devices, algorithms, and procedures used to recognize the individuals based on the characteristics, physical or behavioral, of their persons. These characteristics are called biometric traits. Nowadays, biometric technologies are becoming more and more widespread, and many people use biometric systems daily. However, in some cases the procedures used for the collection of the biometric traits need the cooperation of the user, controlled environments, illuminations perceived as unpleasant, too strong, or harmful, or the contact of the body with a sensor. For these reasons, techniques for the contactless and less-constrained biometric recognition are being researched, in order to increase the usability and social acceptance of biometric systems, and increase the fields of application of biometric technologies. In this context, the palmprint is a biometric trait whose acquisition is generally well accepted by the users. ...

Genovese, Angelo — Università degli Studi di Milano


Sensor Fusion for Automotive Applications

Mapping stationary objects and tracking moving targets are essential for many autonomous functions in vehicles. In order to compute the map and track estimates, sensor measurements from radar, laser and camera are used together with the standard proprioceptive sensors present in a car. By fusing information from different types of sensors, the accuracy and robustness of the estimates can be increased. Different types of maps are discussed and compared in the thesis. In particular, road maps make use of the fact that roads are highly structured, which allows relatively simple and powerful models to be employed. It is shown how the information of the lane markings, obtained by a front looking camera, can be fused with inertial measurement of the vehicle motion and radar measurements of vehicles ahead to compute a more accurate and robust road geometry estimate. Further, it ...

Lundquist, Christian — Linköping University


Sparse Sensing for Statistical Inference: Theory, Algorithms, and Applications

In today's society, we are flooded with massive volumes of data in the order of a billion gigabytes on a daily basis from pervasive sensors. It is becoming increasingly challenging to locally store and transport the acquired data to a central location for signal/data processing (i.e., for inference). To alleviate these problems, it is evident that there is an urgent need to significantly reduce the sensing cost (i.e., the number of expensive sensors) as well as the related memory and bandwidth requirements by developing unconventional sensing mechanisms to extract as much information as possible yet collecting fewer data. The first aim of this thesis is to develop theory and algorithms for data reduction. We develop a data reduction tool called sparse sensing, which consists of a deterministic and structured sensing function (guided by a sparse vector) that is optimally designed ...

Chepuri, Sundeep Prabhakar — Delft University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.