Spike train discrimination and analysis in neural and surface electromyography (sEMG) applications

The term "spike" is used to describe a short-time event that is the result of the activity of its source. Spikes can be seen in different signal modalities. In these modalities, often more than one source generates spikes. Classification algorithms can be used to group similar spikes, ideally spikes from the same source. This work examines the classification of spikes generated from neurons and muscles. When each detected spike is assigned to its source, the spike trains of these sources can provide information on complex brain network functioning, muscle disorders, and other applications. During the past several decades, there were many attempts to create and improve spike classification algorithms. No matter how advanced these methods are today, errors in classification cannot be avoided. Therefore, methods that would determine and improve reliability of classification are very desirable. In this work, it ...

Gligorijevic, Ivan — KU Leuven


Unsupervised Models for White Matter Fiber-Bundles Analysis in Multiple Sclerosis

Diffusion Magnetic Resonance Imaging (dMRI) is a meaningful technique for white matter (WM) fiber-tracking and microstructural characterization of axonal/neuronal integrity and connectivity. By measuring water molecules motion in the three directions of space, numerous parametric maps can be reconstructed. Among these, fractional anisotropy (FA), mean diffusivity (MD), and axial (λa) and radial (λr) diffusivities have extensively been used to investigate brain diseases. Overall, these findings demonstrated that WM and grey matter (GM) tissues are subjected to numerous microstructural alterations in multiple sclerosis (MS). However, it remains unclear whether these tissue alterations result from global processes, such as inflammatory cascades and/or neurodegenerative mechanisms, or local inflammatory and/or demyelinating lesions. Furthermore, these pathological events may occur along afferent or afferent WM fiber pathways, leading to antero- or retrograde degeneration. Thus, for a better understanding of MS pathological processes like its spatial and ...

Stamile, Claudio — Université Claude Bernard Lyon 1, KU Leuven


Analysis of electrophysiological measurements during stress monitoring

Work-related musculoskeletal disorders are a growing problem in todays society. These musculoskeletal disorders are caused by, amongst others, repetitive movements and mental stress. Stress is defined as the mismatch between a perceived demand and the perceived capacities to meet this demand. Although stress has a subjective origin, several physiological manifestations (e.g. cardiovascular and muscular) occur during periods of perceived stress. New insight and algorithms to extract information, related to stress are beneficial. Therefore, two series of stress experiments are executed in a laboratory environment, where subjects underwent different tasks inducing physical strain, mental stress and a combination of both. In this manuscript, new and modified algorithms for electromyography signals are presented that improve the individual analysis of electromyography signals. A first algorithm removes the interference of the electrical activity of the heart on singlechannel electromyography measurements. This interference signal is ...

Taelman, Joachim — KU Leuven


Modeling of Magnetic Fields and Extended Objects for Localization Applications

The level of automation in our society is ever increasing. Technologies like self-driving cars, virtual reality, and fully autonomous robots, which all were unimaginable a few decades ago, are realizable today, and will become standard consumer products in the future. These technologies depend upon autonomous localization and situation awareness where careful processing of sensory data is required. To increase efficiency, robustness and reliability, appropriate models for these data are needed. In this thesis, such models are analyzed within three different application areas, namely (1) magnetic localization, (2) extended target tracking, and (3) autonomous learning from raw pixel information. Magnetic localization is based on one or more magnetometers measuring the induced magnetic field from magnetic objects. In this thesis we present a model for determining the position and the orientation of small magnets with an accuracy of a few millimeters. This ...

Wahlström, Niklas — Linköping University


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki


Central and peripheral mechanisms: a multimodal approach to understanding and restoring human motor control

All human actions involve motor control. Even the simplest movement requires the coordinated recruitment of many muscles, orchestrated by neuronal circuits in the brain and the spinal cord. As a consequence, lesions affecting the central nervous system, such as stroke, can lead to a wide range of motor impairments. While a certain degree of recovery can often be achieved by harnessing the plasticity of the motor hierarchy, patients typically struggle to regain full motor control. In this context, technology-assisted interventions offer the prospect of intense, controllable and quantifiable motor training. Yet, clinical outcomes remain comparable to conventional approaches, suggesting the need for a paradigm shift towards customized knowledge-driven treatments to fully exploit their potential. In this thesis, we argue that a detailed understanding of healthy and impaired motor pathways can foster the development of therapies optimally engaging plasticity. To this ...

Kinany, Nawal — Ecole Polytechnique Fédérale de Lausanne (EPFL)


Parameter Estimation and Filtering Using Sparse Modeling

Sparsity-based estimation techniques deal with the problem of retrieving a data vector from an undercomplete set of linear observations, when the data vector is known to have few nonzero elements with unknown positions. It is also known as the atomic decomposition problem, and has been carefully studied in the field of compressed sensing. Recent findings have led to a method called basis pursuit, also known as Least Absolute Shrinkage and Selection Operator (LASSO), as a numerically reliable sparsity-based approach. Although the atomic decomposition problem is generally NP-hard, it has been shown that basis pursuit may provide exact solutions under certain assumptions. This has led to an extensive study of signals with sparse representation in different domains, providing a new general insight into signal processing. This thesis further investigates the role of sparsity-based techniques, especially basis pursuit, for solving parameter estimation ...

Panahi, Ashkan — Chalmers University of Technology


Statistical and Discriminative Language Modeling for Turkish Large Vocabulary Continuous Speech Recognition

Turkish, being an agglutinative language with rich morphology, presents challenges for Large Vocabulary Continuous Speech Recognition (LVCSR) systems. First, the agglutinative nature of Turkish leads to a high number of Out-of Vocabulary (OOV) words which in turn lower Automatic Speech Recognition (ASR) accuracy. Second, Turkish has a relatively free word order that leads to non-robust language model estimates. These challenges have been mostly handled by using meaningful segmentations of words, called sub-lexical units, in language modeling. However, a shortcoming of sub-lexical units is over-generation which needs to be dealt with for higher accuracies. This dissertation aims to address the challenges of Turkish in LVCSR. Grammatical and statistical sub-lexical units for language modeling are investigated and they yield substantial improvements over the word language models. Our novel approach inspired by dynamic vocabulary adaptation mostly recovers the errors caused by over-generation and ...

Arisoy, Ebru — Bogazici University


A Geometric Deep Learning Approach to Sound Source Localization and Tracking

The localization and tracking of sound sources using microphone arrays is a problem that, even if it has attracted attention from the signal processing research community for decades, remains open. In recent years, deep learning models have surpassed the state-of-the-art that had been established by classic signal processing techniques, but these models still struggle with handling rooms with strong reverberations or tracking multiple sources that dynamically appear and disappear, especially when we cannot apply any criteria to classify or order them. In this thesis, we follow the ideas of the Geometric Deep Learning framework to propose new models and techniques that mean an advance of the state-of-the-art in the aforementioned scenarios. As the input of our models, we use acoustic power maps computed using the SRP-PHAT algorithm, a classic signal processing technique that allows us to estimate the acoustic energy ...

Diaz-Guerra, David — University of Zaragoza


Acoustic sensor network geometry calibration and applications

In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...

Plinge, Axel — TU Dortmund University


On Ways to Improve Adaptive Filter Performance

Adaptive filtering techniques are used in a wide range of applications, including echo cancellation, adaptive equalization, adaptive noise cancellation, and adaptive beamforming. The performance of an adaptive filtering algorithm is evaluated based on its convergence rate, misadjustment, computational requirements, and numerical robustness. We attempt to improve the performance by developing new adaptation algorithms and by using "unconventional" structures for adaptive filters. Part I of this dissertation presents a new adaptation algorithm, which we have termed the Normalized LMS algorithm with Orthogonal Correction Factors (NLMS-OCF). The NLMS-OCF algorithm updates the adaptive filter coefficients (weights) on the basis of multiple input signal vectors, while NLMS updates the weights on the basis of a single input vector. The well-known Affine Projection Algorithm (APA) is a special case of our NLMS-OCF algorithm. We derive convergence and tracking properties of NLMS-OCF using a simple model ...

Sankaran, Sundar G. — Virginia Tech


Automated detection of epileptic seizures in pediatric patients based on accelerometry and surface electromyography

Epilepsy is one of the most common neurological diseases that manifests in repetitive epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. There is no cure for epilepsy and sometimes even medication and other therapies, like surgery, vagus nerve stimulation or ketogenic diet, do not control the number of seizures. In that case, long-term (home) monitoring and automatic seizure detection would enable the tracking of the evolution of the disease and improve objective insight in any responses to medical interventions or changes in medical treatment. Especially during the night, supervision is reduced; hence a large number of seizures is missed. In addition, an alarm should be integrated into the automated seizure detection algorithm for severe seizures in order to help the ...

Milošević, Milica — KU Leuven


Decomposition methods with applications in neuroscience

The brain is the most important signal processing unit in the human body. It is responsible for receiving, processing and storing information. One of the possibilities to study brain functioning is by placing electrodes on the scalp and recording the synchronous neuronal activity of the brain. Such a recording measures a combination of active processes in the whole brain. Unfortunately, it is also contaminated by artifacts. By extracting the artifacts and removing them, cleaned recordings can be investigated. Furthermore, it is easier to look at specific brain activities, like an epileptic seizure, than at a combination. In this thesis, we present different mathematical techniques that can be used to extract individual contributing sources from the measured signals for this purpose. We focused on Canonical Correlation Analysis (CCA), Independent Component Analysis (ICA) and Canonical/ Parallel Factor Analysis (CPA). We show that ...

De Vos, Maarten — Katholieke Universiteit Leuven


Bayesian Signal Processing Techniques for GNSS Receivers: from multipath mitigation to positioning

This dissertation deals with the design of satellite-based navigation receivers. The term Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the american GPS is probably the most popular, the european contribution (Galileo) will be operative soon. Other global and regional systems exist, all with the same objective: aid user's positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation signals structure and receiver architecture. The design of a GNSS receiver consists of a number of functional blocks. From the antenna to the fi nal position calculation, the design poses challenges in many research areas. Although the Radio Frequency chain of the receiver is commented in the thesis, the main objective of the dissertation is on the signal processing algorithms applied after signal digitation. These ...

Closas, Pau — Universitat Politecnica de Catalunya


Contributions to the Information Fusion : application to Obstacle Recognition in Visible and Infrared Images

The interest for the intelligent vehicle field has been increased during the last years, must probably due to an important number of road accidents. Many accidents could be avoided if a device attached to the vehicle would assist the driver with some warnings when dangerous situations are about to appear. In recent years, leading car developers have recorded significant efforts and support research works regarding the intelligent vehicle field where they propose solutions for the existing problems, especially in the vision domain. Road detection and following, pedestrian or vehicle detection, recognition and tracking, night vision, among others are examples of applications which have been developed and improved recently. Still, a lot of challenges and unsolved problems remain in the intelligent vehicle domain. Our purpose in this thesis is to design an Obstacle Recognition system for improving the road security by ...

Apatean, Anca Ioana — Institut National des Sciences Appliquées de Rouen

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.