Epigraphical splitting of convex constraints. Application to image recovery, supervised classification, and image forgery detection.

In this thesis, we present a convex optimization approach to address three problems arising in multicomponent image recovery, supervised classification, and image forgery detection. The common thread among these problems is the presence of nonlinear convex constraints difficult to handle with state-of-the-art methods. Therefore, we present a novel splitting technique to simplify the management of such constraints. Relying on this approach, we also propose some contributions that are tailored to the aforementioned applications. The first part of the thesis presents the epigraphical splitting of nonlinear convex constraints. The principle is to decompose the sublevel set of a block-separable function into a collection of epigraphs. So doing, we reduce the complexity of optimization algorithms when the above constraint involves the sum of absolute values, distance functions to a convex set, Euclidean norms, infinity norms, or max functions. We demonstrate through numerical ...

Chierchia, Giovanni — Telecom ParisTech


Cost functions for acoustic filters estimations in reverberant mixtures

This work is focused on the processing of multichannel and multisource audio signals. From an audio mixture of several audio sources recorded in a reverberant room, we wish to es- timate the acoustic responses (a.k.a. mixing filters) between the sources and the microphones. To solve this inverse problem one need to take into account additional hypotheses on the nature of the acoustic responses. Our approach consists in first identifying mathematically the neces- sary hypotheses on the acoustic responses for their estimation and then building cost functions and algorithms to effectively estimate them. First, we considered the case where the source signals are known. We developed a method to estimate the acoustic responses based on a convex regularization which exploits both the temporal sparsity of the filters and the exponentially decaying envelope. Real-world experi- ments confirmed the effectiveness of this method ...

Benichoux, Alexis — Université Rennes I


Bayesian Compressed Sensing using Alpha-Stable Distributions

During the last decades, information is being gathered and processed at an explosive rate. This fact gives rise to a very important issue, that is, how to effectively and precisely describe the information content of a given source signal or an ensemble of source signals, such that it can be stored, processed or transmitted by taking into consideration the limitations and capabilities of the several digital devices. One of the fundamental principles of signal processing for decades is the Nyquist-Shannon sampling theorem, which states that the minimum number of samples needed to reconstruct a signal without error is dictated by its bandwidth. However, there are many cases in our everyday life in which sampling at the Nyquist rate results in too many data and thus, demanding an increased processing power, as well as storage requirements. A mathematical theory that emerged ...

Tzagkarakis, George — University of Crete


On some aspects of inverse problems in image processing

This work is concerned with two image-processing problems, image deconvolution with incomplete observations and data fusion of spectral images, and with some of the algorithms that are used to solve these and related problems. In image-deconvolution problems, the diagonalization of the blurring operator by means of the discrete Fourier transform usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods, or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. We propose a new deconvolution framework for images with incomplete observations that allows one to work with diagonalizable convolution operators, and therefore is very fast. The framework is also an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge ...

Simões, Miguel — Universidade de Lisboa, Instituto Superior Técnico & Université Grenoble Alpes


Robust Adaptive Machine Learning Algorithms for Distributed Signal Processing

Distributed networks comprising a large number of nodes, e.g., Wireless Sensor Networks, Personal Computers (PC’s), laptops, smart phones, etc., which cooperate with each other in order to reach a common goal, constitute a promising technology for several applications. Typical examples include: distributed environmental monitoring, acoustic source localization, power spectrum estimation, etc. Sophisticated cooperation mechanisms can significantly benefit the learning process, through which the nodes achieve their common objective. In this dissertation, the problem of adaptive learning in distributed networks is studied, focusing on the task of distributed estimation. A set of nodes sense information related to certain parameters and the estimation of these parameters constitutes the goal. Towards this direction, nodes exploit locally sensed measurements as well as information springing from interactions with other nodes of the network. Throughout this dissertation, the cooperation among the nodes follows the diffusion optimization ...

Chouvardas, Symeon — National and Kapodistrian University of Athens


Group-Sparse Regression - With Applications in Spectral Analysis and Audio Signal Processing

This doctorate thesis focuses on sparse regression, a statistical modeling tool for selecting valuable predictors in underdetermined linear models. By imposing different constraints on the structure of the variable vector in the regression problem, one obtains estimates which have sparse supports, i.e., where only a few of the elements in the response variable have non-zero values. The thesis collects six papers which, to a varying extent, deals with the applications, implementations, modifications, translations, and other analysis of such problems. Sparse regression is often used to approximate additive models with intricate, non-linear, non-smooth or otherwise problematic functions, by creating an underdetermined model consisting of candidate values for these functions, and linear response variables which selects among the candidates. Sparse regression is therefore a widely used tool in applications such as, e.g., image processing, audio processing, seismological and biomedical modeling, but is ...

Kronvall, Ted — Lund University


Sparse Sensing for Statistical Inference: Theory, Algorithms, and Applications

In today's society, we are flooded with massive volumes of data in the order of a billion gigabytes on a daily basis from pervasive sensors. It is becoming increasingly challenging to locally store and transport the acquired data to a central location for signal/data processing (i.e., for inference). To alleviate these problems, it is evident that there is an urgent need to significantly reduce the sensing cost (i.e., the number of expensive sensors) as well as the related memory and bandwidth requirements by developing unconventional sensing mechanisms to extract as much information as possible yet collecting fewer data. The first aim of this thesis is to develop theory and algorithms for data reduction. We develop a data reduction tool called sparse sensing, which consists of a deterministic and structured sensing function (guided by a sparse vector) that is optimally designed ...

Chepuri, Sundeep Prabhakar — Delft University of Technology


Sparse Signal Recovery From Incomplete And Perturbed Data

Sparse signal recovery consists of algorithms that are able to recover undersampled high dimensional signals accurately. These algorithms require fewer measurements than traditional Shannon/Nyquist sampling theorem demands. Sparse signal recovery has found many applications including magnetic resonance imaging, electromagnetic inverse scattering, radar/sonar imaging, seismic data collection, sensor array processing and channel estimation. The focus of this thesis is on electromagentic inverse scattering problem and joint estimation of the frequency offset and the channel impulse response in OFDM. In the electromagnetic inverse scattering problem, the aim is to find the electromagnetic properties of unknown targets from measured scattered field. The reconstruction of closely placed point-like objects is investigated. The application of the greedy pursuit based sparse recovery methods, OMP and FTB-OMP, is proposed for increasing the reconstruction resolution. The performances of the proposed methods are compared against NESTA and MT-BCS methods. ...

Senyuva, Rifat Volkan — Bogazici University


Parallel Magnetic Resonance Imaging reconstruction problems using wavelet representations

To reduce scanning time or improve spatio-temporal resolution in some MRI applications, parallel MRI acquisition techniques with multiple coils have emerged since the early 90’s as powerful methods. In these techniques, MRI images have to be reconstructed from ac- quired undersampled “k-space” data. To this end, several reconstruction techniques have been proposed such as the widely-used SENSitivity Encoding (SENSE) method. However, the reconstructed images generally present artifacts due to the noise corrupting the ob- served data and coil sensitivity profile estimation errors. In this work, we present novel SENSE-based reconstruction methods which proceed with regularization in the complex wavelet domain so as to promote the sparsity of the solution. These methods achieve ac- curate image reconstruction under degraded experimental conditions, in which neither the SENSE method nor standard regularized methods (e.g. Tikhonov) give convincing results. The proposed approaches relies on ...

Lotfi CHAARI — University Paris-Est


Solving inverse problems in room acoustics using physical models, sparse regularization and numerical optimization

Reverberation consists of a complex acoustic phenomenon that occurs inside rooms. Many audio signal processing methods, addressing source localization, signal enhancement and other tasks, often assume absence of reverberation. Consequently, reverberant environments are considered challenging as state-ofthe-art methods can perform poorly. The acoustics of a room can be described using a variety of mathematical models, among which, physical models are the most complete and accurate. The use of physical models in audio signal processing methods is often non-trivial since it can lead to ill-posed inverse problems. These inverse problems require proper regularization to achieve meaningful results and involve the solution of computationally intensive large-scale optimization problems. Recently, however, sparse regularization has been applied successfully to inverse problems arising in different scientific areas. The increased computational power of modern computers and the development of new efficient optimization algorithms makes it possible ...

Antonello, Niccolò — KU Leuven


First-order Convex Optimization Methods for Signal and Image Processing

In this thesis we investigate the use of first-order convex optimization methods applied to problems in signal and image processing. First we make a general introduction to convex optimization, first-order methods and their iteration complexity. Then we look at different techniques, which can be used with first-order methods such as smoothing, Lagrange multipliers and proximal gradient methods. We continue by presenting different applications of convex optimization and notable convex formulations with an emphasis on inverse problems and sparse signal processing. We also describe the multiple-description problem. We finally present the contributions of the thesis. The remaining parts of the thesis consist of five research papers. The first paper addresses non-smooth first-order convex optimization and the trade-off between accuracy and smoothness of the approximating smooth function. The second and third papers concern discrete linear inverse problems and reliable numerical reconstruction software. ...

Jensen, Tobias Lindstrøm — Aalborg University


Adaptive Nonlocal Signal Restoration and Enhancement Techniques for High-Dimensional Data

The large number of practical applications involving digital images has motivated a significant interest towards restoration solutions that improve the visual quality of the data under the presence of various acquisition and compression artifacts. Digital images are the results of an acquisition process based on the measurement of a physical quantity of interest incident upon an imaging sensor over a specified period of time. The quantity of interest depends on the targeted imaging application. Common imaging sensors measure the number of photons impinging over a dense grid of photodetectors in order to produce an image similar to what is perceived by the human visual system. Different applications focus on the part of the electromagnetic spectrum not visible by the human visual system, and thus require different sensing technologies to form the image. In all cases, even with the advance of ...

Maggioni, Matteo — Tampere University of Technology


Bayesian Fusion of Multi-band Images: A Powerful Tool for Super-resolution

Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands (a three dimensional data cube), has opened a new range of relevant applications, such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However, while HS sensors provide abundant spectral information, their spatial resolution is generally more limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fusing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but lower spectral resolution, also known as multi-resolution image fusion, has been explored for many years [AMV+11]. From an application point of view, this problem is also important as motivated by recent national programs, e.g., the Japanese next-generation space-borne ...

Wei, Qi — University of Toulouse


Contributions to signal analysis and processing using compressed sensing techniques

Chapter 2 contains a short introduction to the fundamentals of compressed sensing theory, which is the larger context of this thesis. We start with introducing the key concepts of sparsity and sparse representations of signals. We discuss the central problem of compressed sensing, i.e. how to adequately recover sparse signals from a small number of measurements, as well as the multiple formulations of the reconstruction problem. A large part of the chapter is devoted to some of the most important conditions necessary and/or sufficient to guarantee accurate recovery. The aim is to introduce the reader to the basic results, without the burden of detailed proofs. In addition, we also present a few of the popular reconstruction and optimization algorithms that we use throughout the thesis. Chapter 3 presents an alternative sparsity model known as analysis sparsity, that offers similar recovery ...

Cleju, Nicolae — "Gheorghe Asachi" Technical University of Iasi


Linear Dynamical Systems with Sparsity Constraints: Theory and Algorithms

This thesis develops new mathematical theory and presents novel recovery algorithms for discrete linear dynamical systems (LDS) with sparsity constraints on either control inputs or initial state. The recovery problems in this framework manifest as the problem of reconstructing one or more sparse signals from a set of noisy underdetermined linear measurements. The goal of our work is to design algorithms for sparse signal recovery which can exploit the underlying structure in the measurement matrix and the unknown sparse vectors, and to analyze the impact of these structures on the efficacy of the recovery. We answer three fundamental and interconnected questions on sparse signal recovery problems that arise in the context of LDS. First, what are necessary and sufficient conditions for the existence of a sparse solution? Second, given that a sparse solution exists, what are good low-complexity algorithms that ...

Joseph, Geethu — Indian Institute of Science, Bangalore

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.