Abstract / truncated to 115 words (read the full abstract)

In this thesis, signal and image processing algorithms based on sparsity and interval convex programming are developed for inverse problems. Inverse signal processing problems are solved by minimizing the ℓ1 norm or the Total Variation (TV) based cost functions in the literature. A modified entropy functional approximating the absolute value function is defined. This functional is also used to approximate the ℓ1 norm, which is the most widely used cost function in sparse signal processing problems. The modified entropy functional is continuously differentiable, and convex. As a result, it is possible to develop iterative, globally convergent algorithms for compressive sensing, denoising and restoration problems using the modified entropy functional. Iterative interval convex programming algorithms are ... toggle 4 keywords

sparsity compressive sensing filtered variation total variation

Information

Author
Kose, Kivanc
Institution
Bilkent University
Supervisor
Publication Year
2012
Upload Date
Feb. 18, 2013

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.