Data-driven Speech Enhancement: from Non-negative Matrix Factorization to Deep Representation Learning

In natural listening environments, speech signals are easily distorted by variousacoustic interference, which reduces the speech quality and intelligibility of human listening; meanwhile, it makes difficult for many speech-related applications, such as automatic speech recognition (ASR). Thus, many speech enhancement (SE) algorithms have been developed in the past decades. However, most current SE algorithms are difficult to capture underlying speech information (e.g., phoneme) in the SE process. This causes it to be challenging to know what specific information is lost or interfered with in the SE process, which limits the application of enhanced speech. For instance, some SE algorithms aimed to improve human listening usually damage the ASR system. The objective of this dissertation is to develop SE algorithms that have the potential to capture various underlying speech representations (information) and improve the quality and intelligibility of noisy speech. This ...

Xiang, Yang — Aalborg University, Capturi A/S


Unsupervised and semi-supervised Non-negative Matrix Factorization methods for brain tumor segmentation using multi-parametric MRI data

Gliomas represent about 80% of all malignant primary brain tumors. Despite recent advancements in glioma research, patient outcome remains poor. The 5 year survival rate of the most common and most malignant subtype, i.e. glioblastoma, is about 5%. Magnetic resonance imaging (MRI) has become the imaging modality of choice in the management of brain tumor patients. Conventional MRI (cMRI) provides excellent soft tissue contrast without exposing the patient to potentially harmful ionizing radiation. Over the past decade, advanced MRI modalities, such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have gained interest in the clinical field, and their added value regarding brain tumor diagnosis, treatment planning and follow-up has been recognized. Tumor segmentation involves the imaging-based delineation of a tumor and its subcompartments. In gliomas, segmentation plays an important role in treatment planning as well ...

Sauwen, Nicolas — KU Leuven


Speech Enhancement Using Nonnegative Matrix Factorization and Hidden Markov Models

Reducing interference noise in a noisy speech recording has been a challenging task for many years yet has a variety of applications, for example, in handsfree mobile communications, in speech recognition, and in hearing aids. Traditional single-channel noise reduction schemes, such as Wiener filtering, do not work satisfactorily in the presence of non-stationary background noise. Alternatively, supervised approaches, where the noise type is known in advance, lead to higher-quality enhanced speech signals. This dissertation proposes supervised and unsupervised single-channel noise reduction algorithms. We consider two classes of methods for this purpose: approaches based on nonnegative matrix factorization (NMF) and methods based on hidden Markov models (HMM). The contributions of this dissertation can be divided into three main (overlapping) parts. First, we propose NMF-based enhancement approaches that use temporal dependencies of the speech signals. In a standard NMF, the important temporal ...

Mohammadiha, Nasser — KTH Royal Institute of Technology


Models and Software Realization of Russian Speech Recognition based on Morphemic Analysis

Above 20% European citizens speak in Russian therefore the task of automatic recognition of Russian continuous speech has a key significance. The main problems of ASR are connected with the complex mechanism of Russian word-formation. Totally there exist above 3 million diverse valid word-forms that is very large vocabulary ASR task. The thesis presents the novel HMM-based ASR model of Russian that has morphemic levels of speech and language representation. The model includes the developed methods for decomposition of the word vocabulary into morphemes and acoustical and statistical language modelling at the training stage and the method for word synthesis at the last stage of speech decoding. The presented results of application of the ASR model for voice access to the Yellow Pages directory have shown the essential improvement (above 75%) of the real-time factor saving acceptable word recognition rate ...

Karpov, Alexey — St.Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences


Model-Based Deep Speech Enhancement for Improved Interpretability and Robustness

Technology advancements profoundly impact numerous aspects of life, including how we communicate and interact. For instance, hearing aids enable hearing-impaired or elderly people to participate comfortably in daily conversations; telecommunications equipment lifts distance constraints, enabling people to communicate remotely; smart machines are developed to interact with humans by understanding and responding to their instructions. These applications involve speech-based interaction not only between humans but also between humans and machines. However, the microphones mounted on these technical devices can capture both target speech and interfering sounds, posing challenges to the reliability of speech communication in noisy environments. For example, distorted speech signals may reduce communication fluency among participants during teleconferencing. Additionally, noise interference can negatively affect the speech recognition and understanding modules of a voice-controlled machine. This calls for speech enhancement algorithms to extract clean speech and suppress undesired interfering signals, ...

Fang, Huajian — University of Hamburg


Nonnegative Matrix and Tensor Factorizations: Models, Algorithms and Applications

In many fields, such as linear algebra, computational geometry, combinatorial optimization, analytical chemistry and geoscience, nonnegativity of the solution is required, which is either due to the fact that the data is physically nonnegative, or that the mathematical modeling of the problem requires nonnegativity. Image and audio processing are two examples for which the data are physically nonnegative. Probability and graph theory are examples for which the mathematical modeling requires nonnegativity. This thesis is about the nonnegative factorization of matrices and tensors: namely nonnegative matrix factorization (NMF) and nonnegative tensor factorization (NTF). NMF problems arise in a wide range of scenarios such as the aforementioned fields, and NTF problems arise as a generalization of NMF. As the title suggests, the contributions of this thesis are centered on NMF and NTF over three aspects: modeling, algorithms and applications. On the modeling ...

Ang, Man Shun — Université de Mons


Statistical and Discriminative Language Modeling for Turkish Large Vocabulary Continuous Speech Recognition

Turkish, being an agglutinative language with rich morphology, presents challenges for Large Vocabulary Continuous Speech Recognition (LVCSR) systems. First, the agglutinative nature of Turkish leads to a high number of Out-of Vocabulary (OOV) words which in turn lower Automatic Speech Recognition (ASR) accuracy. Second, Turkish has a relatively free word order that leads to non-robust language model estimates. These challenges have been mostly handled by using meaningful segmentations of words, called sub-lexical units, in language modeling. However, a shortcoming of sub-lexical units is over-generation which needs to be dealt with for higher accuracies. This dissertation aims to address the challenges of Turkish in LVCSR. Grammatical and statistical sub-lexical units for language modeling are investigated and they yield substantial improvements over the word language models. Our novel approach inspired by dynamic vocabulary adaptation mostly recovers the errors caused by over-generation and ...

Arisoy, Ebru — Bogazici University


Novel texture synthesis methods and their application to image prediction and image inpainting

This thesis presents novel exemplar-based texture synthesis methods for image prediction (i.e., predictive coding) and image inpainting problems. The main contributions of this study can also be seen as extensions to simple template matching, however the texture synthesis problem here is well-formulated in an optimization framework with different constraints. The image prediction problem has first been put into sparse representations framework by approximating the template with a sparsity constraint. The proposed sparse prediction method with locally and adaptive dictionaries has been shown to give better performance when compared to static waveform (such as DCT) dictionaries, and also to the template matching method. The image prediction problem has later been placed into an online dictionary learning framework by adapting conventional dictionary learning approaches for image prediction. The experimental observations show a better performance when compared to H.264/AVC intra and sparse prediction. ...

Turkan, Mehmet — INRIA-Rennes, France


Interpretable Fault Prediction for CERN Energy Frontier Colliders

The Large Hadron Collider (LHC) is the world’s highest energy particle collider, which has already delivered data for numerous physical discoveries. To continue this quest for discovering new physics, the Compact Linear Collider (CLIC) and the Future Circular Collider (FCC) aim to push the boundaries of fundamental physics at high collision energies. However, as their power, size, and complexity increases, so does the risk of failures and their associated downtime. Fault prediction is a way to minimize downtime by fixing faults in scheduled maintenance intervals before they occur. In the LHC, such fault prediction methods have been supporting system experts to decrease downtime since its start in 2008/9. There are many different scenarios of faults. Each of them occurs rarely, which is why the predictions cannot be validated by statistical tests alone. Nonetheless, the methods work reliably as their predictions ...

Christoph Obermair — CERN, Graz University of Technology


Sound Source Separation in Monaural Music Signals

Sound source separation refers to the task of estimating the signals produced by individual sound sources from a complex acoustic mixture. It has several applications, since monophonic signals can be processed more efficiently and flexibly than polyphonic mixtures. This thesis deals with the separation of monaural, or, one-channel music recordings. We concentrate on separation methods, where the sources to be separated are not known beforehand. Instead, the separation is enabled by utilizing the common properties of real-world sound sources, which are their continuity, sparseness, and repetition in time and frequency, and their harmonic spectral structures. One of the separation approaches taken here use unsupervised learning and the other uses model-based inference based on sinusoidal modeling. Most of the existing unsupervised separation algorithms are based on a linear instantaneous signal model, where each frame of the input mixture signal is modeled ...

Virtanen, Tuomas — Tampere University of Technology


Audiovisual Speech Synthesis Based on Hidden Markov Models

In this dissertation, new methods for audiovisual speech synthesis using Hidden Markov Models (HMMs) are presented and their properties are investigated. The problem of audiovisual speech synthesis is to computationally generate both audible speech as well as a matching facial animation or video (a “visual speech signal”) for any given input text. This results in “talking heads” that can read any text to a user, with applications ranging from virtual agents in human-computer interaction to characters in animated films and computer games. For recording and playback of facial motion, an optical marker-based facial motion capturing hardware system and 3D animation software are employed, which represent the state of the art in the animation industry. For modeling the acoustic and motion parameters of the synchronously recorded speech data, an existing HMM-based acoustic speech synthesis framework has been extended to the visual ...

Schabus, Dietmar — Graz University of Technology, Signal Processing and Speech Communication Laboratory


Hierarchical Language Modeling for One-Stage Stochastic Interpretation of Natural Speech

The thesis deals with automatic interpretation of naturally spoken utterances for limited-domain applications. Specifically, the problem is examined by means of a dialogue system for an airport information application. In contrast to traditional two-stage systems, speech recognition and semantic processing are tightly coupled. This avoids interpretation errors due to early decisions. The presented one-stage decoding approach utilizes a uniform, stochastic knowledge representation based on weighted transition network hierarchies, which describe phonemes, words, word classes and semantic concepts. A robust semantic model, which is estimated by combination of data-driven and rule-based approaches, is part of this representation. The investigation of this hierarchical language model is the focus of this work. Furthermore, methods for modeling out-of-vocabulary words and for evaluating semantic trees are introduced.

Thomae, Matthias — Technische Universität München


Phonetic Similarity Matching of Non-Literal Transcripts in Automatic Speech Recognition

Large vocabulary continuous speech recognition (LVCSR) systems require large amounts of labelled audio data for training. While such literal transcriptions of audio recordings, i.e., highly accurate textual reproductions of the utterances are expensive and therefore only avail- able in limited amounts, non-literal field data from commercial automatic dictation systems can be collected on large scale but with quality limitations. Automatic draft transcriptions from the dictation system contain misrecognitions and the manual corrections of the draft transcriptions produced by professional transcriptionists have been reformulated to comply with stylistic guidelines. In this work, phonetic similarity matching is utilised to bridge this gap between literal and non-literal text resources such that large amounts of non-literal transcripts can be em- ployed for the improvement of LVCSR systems. For the first time, a detailed analysis of the deviations between manual reference transcripts, automatically recognised transcripts, ...

Petrik, Stefan — Graz University of Technology


Robust Speech Recognition: Analysis and Equalization of Lombard Effect in Czech Corpora

When exposed to noise, speakers will modify the way they speak in an effort to maintain intelligible communication. This process, which is referred to as Lombard effect (LE), involves a combination of both conscious and subconscious articulatory adjustment. Speech production variations due to LE can cause considerable degradation in automatic speech recognition (ASR) since they introduce a mismatch between parameters of the speech to be recognized and the ASR system’s acoustic models, which are usually trained on neutral speech. The main objective of this thesis is to analyze the impact of LE on speech production and to propose methods that increase ASR system performance in LE. All presented experiments were conducted on the Czech spoken language, yet, the proposed concepts are assumed applicable to other languages. The first part of the thesis focuses on the design and acquisition of a ...

Boril, Hynek — Czech Technical University in Prague


Automatic Speaker Characterization; Identification of Gender, Age, Language and Accent from Speech Signals

Speech signals carry important information about a speaker such as age, gender, language, accent and emotional/psychological state. Automatic recognition of speaker characteristics has a wide range of commercial, medical and forensic applications such as interactive voice response systems, service customization, natural human-machine interaction, recognizing the type of pathology of speakers, and directing the forensic investigation process. This research aims to develop accurate methods and tools to identify different physical characteristics of the speakers. Due to the lack of required databases, among all characteristics of speakers, our experiments cover gender recognition, age estimation, language recognition and accent/dialect identification. However, similar approaches and techniques can be applied to identify other characteristics such as emotional/psychological state. For speaker characterization, we first convert variable-duration speech signals into fixed-dimensional vectors suitable for classification/regression algorithms. This is performed by fitting a probability density function to acoustic ...

Bahari, Mohamad Hasan — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.