Design and Implementation of Multiuser MIMO Precoding Algorithms (2012)
Multiple-Antenna Systems: From Generic to Hardware-Informed Precoding Designs
5G-and-beyond communication systems are expected to be in a heterogeneous form of multiple-antenna cellular base stations (BSs) overlaid with small cells. The fully-digital BS structures can incur significant power consumption and hardware complexity. Moreover, the wireless BSs for small cells usually have strict size constraints, which incur additional hardware effects such as mutual coupling (MC). Consequently, the transmission techniques designed for future wireless communication systems should respect the hardware structures at the BSs. For this reason, in this thesis we extend generic downlink precoding to more advanced hardware-informed transmission techniques for a variety of BS structures. This thesis firstly extends the vector perturbation (VP) precoding to multiple-modulation scenarios, where existing VP-based techniques are sub-optimal. Subsequently, this thesis focuses on the downlink transmission designs for hardware effects in the form of MC, limited number of radio frequency (RF) chains, and low-precision ...
LI, ANG — University College London
Design and Implementation of Efficient Algorithms for Wireless MIMO Communication Systems
In the last decade, one of the most significant technological developments that led to the new broadband wireless generation is the communication via multiple-input multiple-output (MIMO) systems. MIMO technologies have been adopted by many wireless standards such as Long Term Evolution (LTE), Wordlwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). This is mainly due to their ability to increase the maximum transmission rates, together with the achieved reliability and coverage of current wireless communications, all without the need for additional bandwidth nor transmit power. Nevertheless, the advantages provided by MIMO systems come at the expense of a substantial increase in the cost to deploy multiple antennas and also in the receiver complexity, which has a major impact on the power consumption. Therefore, the design of low-complexity receivers is an important issue which is tackled throughout this ...
Roger, Sandra — Universitat Politècnica de València (Technical University of Valencia)
Precoding and Relaying Algorithms for Multiuser MIMO Downlink Channels
In the last years, research has focused on multiple-input multiple-output (MIMO) wireless technology due to the capacity and performance improvement it provides, offering a higher spectral efficiency. In addition, when multiple users take part in the network, the scenario becomes much more complex, since resources like bandwidth, time or transmission power must be shared. Furthermore, the performance of the system is degraded as a consequence of the noise and multiuser interference (MUI). When the transmission is conducted from a base station (BS) to multiple users, a pre-equalization stage called precoding is applied. By means of this, each user will be able to interpret the signal independently, without the knowledge of the channel. Precoding techniques are classified into linear and non-linear. In fact, the non-linear Tomlinson-Harashima precoding (THP) and vector precoding (VP) techniques have been shown to achieve very good results ...
Jimenez, Idoia — University of Mondragon
Signal Processing for Multicell Multiuser MIMO Wireless Communication Systems
Multi-user multi-antenna wireless communication systems have become essential due to the widespread of smart applications and the use of the Internet. Ultra-dense deployment of small cell networks has been recognized as an effective way to meet the exponentially growing mobile data traffic and to accommodate increasingly diversified mobile applications for beyond 5G and future wireless networks. Small cells using low power nodes are meant to be deployed in hot spots, where the number of users varies strongly with time and between adjacent cells. As a result, small cells are expected to have burst-like traffic, which makes the static time division duplex (TDD) frame configuration strategy, where a common TDD pattern is selected for the whole network, not able to meet the users' requirements and the traffic fluctuations. Dynamic TDD (DTDD) technology which allows the cells to independently adapt their TDD ...
Nwalozie, Gerald Chetachi — Technische Universität Ilmenau
Large Multiuser MIMO Detection: Algorithms and Architectures
After decades of research on multiple-input multiple-output (MIMO) technology, including paradigm shifts from point-to-point to multiuser MIMO (MU-MIMO), an ample literature exists on techniques to exploit the spatial dimension to increase link throughput and network capacity of wireless communication systems. Massive MIMO, which supports hundreds of antennas at the base station (BS), is celebrated as the key enabling technology of the upcoming fifth generation (5G) wireless communication standard. However, the use of large MIMO systems in the future is also indispensable, especially for high-speed wireless backhaul connectivity. Large MIMO systems use tens of antennas in communication terminals, and can afford a large number of antennas on both the transmitter and the receiver sides. While favorable propagation in massive MIMO ensures that reliable performance can be achieved by simple linear processing, the inherent symmetry in large MIMO renders the computational complexity ...
Sarieddeen, Hadi — American University of Beirut (AUB)
In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime ofWSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the ...
Moragrega, Ana — Universitat Politecnica de Catalunya
Advanced Multi-Dimensional Signal Processing for Wireless Systems
The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...
Cheng, Yao — Ilmenau University of Technology
Phase Noise and Wideband Transmission in Massive MIMO
In the last decades the world has experienced a massive growth in the demand for wireless services. The recent popularity of hand-held devices with data exchange capabilities over wireless networks, such as smartphones and tablets, increased the wireless data traffic even further. This trend is not expected to cease in the foreseeable future. In fact, it is expected to accelerate as everyday apparatus unrelated with data communications, such as vehicles or household devices, are foreseen to be equipped with wireless communication capabilities. Further, the next generation wireless networks should be designed such that they have increased spectral and energy efficiency, provide uniformly good service to all of the accommodated users and handle many more devices simultaneously. Massive multiple-input multiple-output (Massive MIMO) systems, also termed as large-scale MIMO, very large MIMO or full-dimension MIMO, have recently been proposed as a candidate ...
Pitarokoilis, Antonios — Linköping University
Cooperative and Cognitive Communication Techniques for Wireless Networks
During the past years wireless communications have been exhibiting an increased growth rendering them the most common way for communication. The continuously increasing demand for wireless services resulted in limited availability of the wireless spectrum. To this end, Cognitive Radio (CR) techniques have been proposed in literature during the past years. The concept of CR approach is to utilize advanced radio and signal-processing technology along with novel spectrum allocation policies to enable new unlicensed wireless users to operate in the existing occupied spectrum areas without degrading the performance of the existing licensed ones. Moreover, the broadcast and fading nature of the wireless channel results in severe degradation on the performance of wireless transmissions. A solution to the problem is the use of multiple-antenna systems so as to achieve spatial diversity. However, in many cases, the communication devices' nature permit the ...
Tsinos, Christos — University of Patras
Cooperative Techniques for Interference Management in Wireless Networks
In the last few years, wireless devices have evolved to unimaginable heights. Current forecasts suggest that, in the near future, every device that may take advantage of a wireless connection will have one. In addition, there is a gradual migration to smart devices and high-speed connections, and, as a consequence, the overall mobile traffic is expected to experience a tremendous growth in the next years. The multiuser interference will hence become the main limiting factor and the most critical point to address. As instrumental to efficiently manage interference between different systems, this thesis provides a thorough study on cooperative techniques. That is, users share information and exploit it to improve the overall performance. Since multiuser cooperation represents a very broad term, we will focus on algorithm design and transceiver optimization for three cooperative scenarios that capture some of the main ...
Lameiro, Christian — University of Cantabria
Impact of channel state information on the analysis and design of multiantenna communication systems
During the last decade, there has been a steady increase in the demand of high data rates that are to be supported by wireless communication applications. Among the different solutions that have been proposed by the research community to cope with this new demand, the utilization of multiple antennas arises as one of the best candidates due to the fact that it provides both an increase in reliability and also in information transmission rate. Although the use of multiple antennas at the receiver side dates back from the sixties, the full potential of multiple antennas at both communication ends has been both theoretically and practically recognized in the last few years. The design of proper multi-antenna communication systems to satisfy the high data rates demand depends not only on the chosen figure of merit or performance metric, but also on ...
Payaró Llisterri, Miquel — Centre Technologic de Telecomunicacions de Catalunya
When data is transmitted over the wireless communication channel, the transmit signal experiences distortion depending on the channel¢s fading characteristics. On the one hand, this calls for efficient processing at the receiver to mitigate the detrimental effects of the channel and maximize data throughput. On the other hand, the diversity inherently present in these channels can be leveraged with appropriate transmit processing in order to increase the reliability of the transmission link. Recently, in [1] it was shown that the channel characteristics can be exploited to maximize the total data throughput in the interference channel where multiple user pairs rely on the same resource to communicate among themselves. In this PhD dissertation, we first propose novel equalizer designs for frequency selective channels. We then present new results on the diversity gain of equalizers in fading channels when appropriate precoding is ...
Shenoy, Shakti Prasad — EURECOM/Mobile Communications
Multiple-input multiple-output (MIMO) systems will be applied in wireless communications in order to increase the performance, spectral efficiency, and reliability. Theoretically, the channel capacity of those systems grows linearly with the number of transmit and receive antennas. An important performance metric beneath capacity is the normalised mean square error (MSE) under the assumption of optimal linear reception. Clearly, both performance measures depend on the properties of the MIMO channel as well as on the considered system approach, e.g. on the type of channel state information which is available at the transmitter. It has been shown that even partial CSI at the transmitter can increase the performance. In this thesis, we analyse the performance and design optimal transmit strategies of singleand multiuser MIMO systems with respect to the statistical properties of the fading channel and under different types of CSI at ...
Jorswieck, Eduard — TU Berlin / Mobile Communications
Separability of Closely Spaced Users in Massive MIMO Systems
Massive multiple-input multiple-output (MIMO) evolved to a key enabling physical layer (PHY) technology for the fifth generation (5G) of mobile communication systems and beyond. While the envisioned use cases of such communications systems are diverse, so are the challenges to meet their respective requirements. As a large-scale evolution of already well-established MIMO communications technologies, massive MIMO promises benefits with respect to all possible use cases. Theoretical works on massive MIMO, however, typically assumes i.i.d. Rayleigh fading channels without spatial channel correlation. The application of this model is justified through the assumption of rich scattering environments, which is claimed to hold, for example, in indoor environments. Spatial correlation of wireless channels leads to inter-stream interference in single-user MIMO communications systems and to inter-user interference in multi-user MIMO systems with linear precoding. Channel correlation is therefore crucial for the performance of such ...
Stefan Pratschner — TU Wien
Massive MIMO Technologies for 5G and Beyond-5G Wireless Networks
Massive multiple input multiple output (MIMO) is a promising 5G and beyond-5G wireless access technology that can provide huge throughput, compared with the current technology, in order to satisfy some requirements for the future generations of wireless networks. The research described in this thesis proposes the design of some applications of the massive MIMO technology that can be implemented in order to increase the spectral efficiency per cell of the future wireless networks through a simple and low complexity signal processing. In particular, massive MIMO is studied in conjunction with two other topics that are currently under investigation for the future wireless systems, both in academia and in industry: the millimeter wave frequencies and the distributed antenna systems. The first part of the thesis gives a brief overview on the requirements of the future wireless networks and it explains some ...
D'Andrea, Carmen — Università di Cassino e del Lazio Meridionale
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.