Digital signal processing algorithms for noise reduction, dynamic range compression, and feedback cancellation in hearing aids (2011)
Design and Evaluation of Feedback Control Algorithms for Implantable Hearing Devices
Using a hearing device is one of the most successful approaches to partially restore the degraded functionality of an impaired auditory system. However, due to the complex structure of the human auditory system, hearing impairment can manifest itself in different ways and, therefore, its compensation can be achieved through different classes of hearing devices. Although the majority of hearing devices consists of conventional hearing aids (HAs), several other classes of hearing devices have been developed. For instance, bone-conduction devices (BCDs) and cochlear implants (CIs) have successfully been used for more than thirty years. More recently, other classes of implantable devices have been developed such as middle ear implants (MEIs), implantable BCDs, and direct acoustic cochlear implants (DACIs). Most of these different classes of hearing devices rely on a sound processor running different algorithms able to compensate for the hearing impairment. ...
Bernardi, Giuliano — KU Leuven
Adaptive filtering techniques for noise reduction and acoustic feedback cancellation in hearing aids
Understanding speech in noise and the occurrence of acoustic feedback belong to the major problems of current hearing aid users. Hence, an urgent demand exists for efficient and well-working digital signal processing algorithms that offer a solution to these issues. In this thesis we develop adaptive filtering techniques for noise reduction and acoustic feedback cancellation. Thanks to the availability of low power digital signal processors, these algorithms can be integrated in a hearing aid. Because of the ongoing miniaturization in the hearing aid industry and the growing tendency towards multi-microphone hearing aids, robustness against imperfections such as microphone mismatch, has become a major issue in the design of a noise reduction algorithm. In this thesis we propose multimicrophone noise reduction techniques that are based on multi-channel Wiener filtering (MWF). Theoretical and experimental analysis demonstrate that these MWF-based techniques are less ...
Spriet, Ann — Katholieke Universiteit Leuven
Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...
Gil-Cacho, Jose Manuel — KU Leuven
This thesis deals with several open problems in acoustic echo cancellation and acoustic feedback control. Our main goal has been to develop solutions that provide a high performance and sound quality, and behave in a robust way in realistic conditions. This can be achieved by departing from the traditional ad-hoc methods, and instead deriving theoretically well-founded solutions, based on results from parameter estimation and system identification. In the development of these solutions, the computational efficiency has permanently been taken into account as a design constraint, in that the complexity increase compared to the state-of-the-art solutions should not exceed 50 % of the original complexity. In the context of acoustic echo cancellation, we have investigated the problems of double-talk robustness, acoustic echo path undermodeling, and poor excitation. The two former problems have been tackled by including adaptive decorrelation filters in the ...
van Waterschoot, Toon — Katholieke Universiteit Leuven
Integrated active noise control and noise reduction in hearing aids
In every day life conversations and listening scenarios the desired speech signal is rarely delivered alone. The listener most commonly faces a scenario where he has to understand speech in a noisy environment. Hearing impairments, and more particularly sensorineural losses, can cause a reduction of speech understanding in noise. Therefore, in a hearing aid compensating for such kind of losses it is not sufficient to just amplify the incoming sound. Hearing aids also need to integrate algorithms that allow to discriminate between speech and noise in order to extract a desired speech from a noisy environment. A standard noise reduction scheme in general aims at maximising the signal-to-noise ratio of the signal to be fed in the hearing aid loudspeaker. This signal, however, does not reach the eardrum directly. It first has to propagate through an acoustic path and encounter ...
Serizel, Romain — KU Leuven
Due to their decreased ability to understand speech hearing impaired may have difficulties to interact in social groups, especially when several people are talking simultaneously. Fortunately, in the last decades hearing aids have evolved from simple sound amplifiers to modern digital devices with complex functionalities including noise reduction algorithms, which are crucial to improve speech understanding in background noise for hearing-impaired persons. Since many hearing aid users are fitted with two hearing aids, so-called binaural hearing aids have been developed, which exchange data and signals through a wireless link such that the processing in both hearing aids can be synchronized. In addition to reducing noise and limiting speech distortion, another important objective of noise reduction algorithms in binaural hearing aids is the preservation of the listener’s impression of the acoustical scene, in order to exploit the binaural hearing advantage and ...
Marquardt, Daniel — University of Oldenburg, Germany
Analysis, Design, and Evaluation of Acoustic Feedback Cancellation Systems for Hearing Aids
Acoustic feedback problems occur when the output loudspeaker signal of an audio system is partly returned to the input microphone via an acoustic coupling through the air. This problem often causes significant performance degradations in applications such as public address systems and hearing aids. In the worst case, the audio system becomes unstable and howling occurs. In this work, first we analyze a general multiple microphone audio processing system, where a cancellation system using adaptive filters is used to cancel the effect of acoustic feedback. We introduce and derive an accurate approximation of a frequency domain measure—the power transfer function—and show how it can be used to predict system behaviors of the entire cancellation system across time and frequency without knowing the true acoustic feed-back paths. Furthermore, we consider the biased estimation problem, which is one of the most challenging ...
Guo, Meng — Aalborg University
Preserving binaural cues in noise reduction algorithms for hearing aids
Hearing aid users experience great difficulty in understanding speech in noisy environments. This has led to the introduction of noise reduction algorithms in hearing aids. The development of these algorithms is typically done monaurally. However, the human auditory system is a binaural system, which compares and combines the signals received by both ears to perceive a sound source as a single entity in space. Providing two monaural, independently operating, noise reduction systems, i.e. a bilateral configuration, to the hearing aid user may disrupt binaural information, needed to localize sound sources correctly and to improve speech perception in noise. In this research project, we first examined the influence of commercially available, bilateral, noise reduction algorithms on binaural hearing. Extensive objective and perceptual evaluations showed that the bilateral adaptive directional microphone (ADM) and the bilateral fixed directional microphone, two of the most ...
Van den Bogaert, Tim — Katholieke Universiteit Leuven
Design and evaluation of noise reduction techniques for binaural hearing aids
One of the main complaints of hearing aid users is their degraded speech understanding in noisy environments. Modern hearing aids therefore include noise reduction techniques. These techniques are typically designed for a monaural application, i.e. in a single device. However, the majority of hearing aid users currently have hearing aids at both ears in a so-called bilateral fitting, as it is widely accepted that this leads to a better speech understanding and user satisfaction. Unfortunately, the independent signal processing (in particular the noise reduction) in a bilateral fitting can destroy the so-called binaural cues, namely the interaural time and level differences (ITDs and ILDs) which are used to localize sound sources in the horizontal plane. A recent technological advance are so-called binaural hearing aids, where a wireless link allows for the exchange of data (or even microphone signals) between the ...
Cornelis, Bram — KU Leuven
Speech derereverberation in noisy environments using time-frequency domain signal models
Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...
Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg
Robust feedback cancellation algorithms for single- and multi-microphone hearing aids
When providing the necessary amplification in hearing aids, the risk of acoustic feedback is increased due to the coupling between the hearing aid loudspeaker and the hearing aid microphone(s). This acoustic feedback is often perceived as an annoying whistling or howling. Thus, to reduce the occurrence of acoustic feedback, robust and fast-acting feedback suppression algorithms are required. The main objective of this thesis is to develop and evaluate algorithms for robust and fast-acting feedback suppression in hearing aids. Specifically, we focus on enhancing the performance of adaptive filtering algorithms that estimate the feedback component in the hearing aid microphone by reducing the number of required adaptive filter coefficients and by improving the trade-off between fast convergence and good steady-state performance. Additionally, we develop fixed spatial filter design methods that can be applied in a multi-microphone earpiece.
Schepker, Henning — University of Oldenburg
Sparse Multi-Channel Linear Prediction for Blind Speech Dereverberation
In many speech communication applications, such as hands-free telephony and hearing aids, the microphones are located at a distance from the speaker. Therefore, in addition to the desired speech signal, the microphone signals typically contain undesired reverberation and noise, caused by acoustic reflections and undesired sound sources. Since these disturbances tend to degrade the quality of speech communication, decrease speech intelligibility and negatively affect speech recognition, efficient dereverberation and denoising methods are required. This thesis deals with blind dereverberation methods, not requiring any knowledge about the room impulse responses between the speaker and the microphones. More specifically, we propose a general framework for blind speech dereverberation based on multi-channel linear prediction (MCLP) and exploiting sparsity of the speech signal in the time-frequency domain.
Jukić, Ante — University of Oldenburg
Given the widespread use of miniaturized audio interfaces, echo control systems are faced with increasing challenges to address a large variety of acoustic conditions observed by such interfaces. This motivates the use of sophisticated machine learning-based techniques to overcome the limitations of conventional methods. The contributions in this thesis can be outlined by decomposing the task of nonlinear acoustic echo control into two subtasks: Nonlinear Acoustic Echo Cancellation (NAEC) and Acoustic Echo Suppression (AES). In particular, by formulating the single-channel NAEC model-adaptation task as a Bayesian recursive filtering problem, an evolutionary resampling strategy for particle filtering is proposed. The resulting Elitist Resampling Particle Filter (ERPF) is shown experimentally to be an efficient and high-performing approach that can be extended to address challenging conditions such as non-stationary interferers. The fundamental problem of nonlinear model design is addressed by proposing a novel ...
Halimeh, Mhd Modar — Friedrich-Alexander-Universität Erlangen-Nürnberg
Informed spatial filters for speech enhancement
In modern devices which provide hands-free speech capturing functionality, such as hands-free communication kits and voice-controlled devices, the received speech signal at the microphones is corrupted by background noise, interfering speech signals, and room reverberation. In many practical situations, the microphones are not necessarily located near the desired source, and hence, the ratio of the desired speech power to the power of the background noise, the interfering speech, and the reverberation at the microphones can be very low, often around or even below 0 dB. In such situations, the comfort of human-to-human communication, as well as the accuracy of automatic speech recognisers for voice-controlled applications can be signi cantly degraded. Therefore, e ffective speech enhancement algorithms are required to process the microphone signals before transmitting them to the far-end side for communication, or before feeding them into a speech recognition ...
Taseska, Maja — Friedrich-Alexander Universität Erlangen-Nürnberg
Modern devices such as mobile phones, tablets or smart speakers are commonly equipped with several loudspeakers and microphones. If, for instance, one employs such a device for hands-free communication applications, the signals that are reproduced by the loudspeakers are propagated through the room and are inevitably acquired by the microphones. If no processing is applied, the participants in the far-end room receive delayed reverberated replicas of their own voice, which strongly degrades both speech intelligibility and user comfort. In order to prevent that so-called acoustic echoes are transmitted back to the far-end room, acoustic echo cancelers are commonly employed. The latter make use of adaptive filtering techniques to identify the propagation paths between loudspeakers and microphones. The estimated propagation paths are then employed to compute acoustic echo estimates, which are finally subtracted from the signals acquired by the microphones. In ...
Luis Valero, Maria — International Audio Laboratories Erlangen
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.